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A. Network and Layer Specifications

In this section, we provide all the parameters, layer spec-
ifications and weights used in loss functions. We uniformly
denote the fully-connected layers by MLP [l1, ..., ld], where
li is the number of neurons in the i-th layer.

A.1. 3D Detector

In section 3.1, we predict object proposals from N input
points with VoteNet [9] as the backbone. It produces Np
proposals withDp-dim features (i.e. proposal featuresFp ∈
RNp×Dp in our paper), from which we regress the Db-dim
box parameters with MLP [128, 128, 69] (N=80K,Np=256,
Dp=128, Db=69). As in [9], the 69-dim box parameters are
encoded by center c ∈ R3, scale s3 ∈ R3, heading angle
θ ∈ R, semantic label l, and objectness score sobj . sobj is
a probability value indicating whether the proposal is close
to (<0.3 meter, positive) or far from (>0.6 meter, negative)
any ground-truth object center.

A.2. Spatial Transformer

Objectness Dropout Layer. In section 3.2, we adopt an
Objectness Dropout layer to reserve the Top-Nd propos-
als with higher objectness (Nd = 10) for shape learning.
In test, we replace it with 3D Non Maximum Suppression
(3D NMS) to produce the output boxes and corresponding
shapes with the 3D Box IoU threshold of 0.25 in evaluation.
Group & Align. From the Nd box proposals, we group the
neighboring Mp points that are located within a radius r to
each box center using a group layer [11]. Mp=1024, r=1. It
produces Nd point clusters {Pci} (i = 1, 2, ..., Nd,P

c
i ∈

RMp×3). After grouping, we align the 3D points in
each cluster to a canonical system with the Equation 1 in
our paper, where the rotation and translation adjustment
(∆R,∆c) are predicted from Pci as in Figure 1. (∆R,∆c)
are predicted without supervision, which asks for the net-
work to search for the optimal adjustment in spatial align-
ment (see Equation 1 in our paper).
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Figure 1: Rotation and translation adjustment.

A.3. Shape Generator

In section 3.3, we design the shape generator with two
parts (see Figure 3 of the paper): a shape encoder extended
with skip propagation; and a shape decoder based on condi-
tional batch normalization.
Shape Encoder. The layer specification of the denoiser in
skip propagation is illustrated in Figure 2. The PointNet
encoder [10] designed with residual connection is shown
in Figure 3. It takes the extended point clusters as input
(see section 3.3 in the paper) and outputs the new proposal
features

{
f∗
p ∈ RDs

}
, Ds = 512 to decode shapes.

Figure 2: Denoiser in skip propagation.

Shape Decoder. We build the shape decoder as a proba-
bilistic generative model. The latent encoder [8] is fed with
the proposal feature

{
f∗
p

}
, spatial points

{
p ∈ R3

}
with

corresponding occupancy values {o}. It outputs the mean
and standard deviation (µ,σ) to approximate the standard
normal distribution. We illustrate the latent encoder in Fig-
ure 4, where the 2,048 spatial points are randomly sampled
in the shape bounding cube. In our method, we separately
sample 1,024 points inside and 1,024 points outside the
shape mesh. From the predicted distribution N (µ,σ), we
sample a latent code z ∈ RL (L = 32) to predict the occu-
pancy values {o} from {p} conditioned on f∗

p for each ob-
ject. The shape decoder is based on the Conditional Batch
Normalization [3, 4] layers, which is illustrated in Figure 5.

During test, we directly initialize the latent codes with
zeros. As discussed in section 3.3 of our paper, we uni-
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Figure 3: PointNet-based shape encoder with residual connection.

Figure 4: Latent encoder for probabilistic shape generation.

Figure 5: Shape decoder with Conditional Batch Normalization layers.

formly sample spatial points in the object bounding box,
and use Marching Cubes [7] to extract the iso-surface as
object meshes. Specifically, we adopt the efficient Multi-
resolution Iso-Surface Extraction (MISE) algorithm [8] to
improve the spatial sampling efficiency and extract meshes
under 128-d occupancy grids.

A.4. Weights in Loss Functions

We list the weights to balance different loss functions as
follows. We set λcls = 0.1 as the hybrid ratio of combing
the classification and regression losses, i.e., λclsLcls+Lreg,
in defining the scale loss Ls and heading angle loss Lθ.
Then the box loss Lbox in our paper can be denoted as:

Lbox = Lv + Lc + Ls + Lθ + λlLl + λobjLobj , (1)

where λobj = 0.5, λl = 0.1. For shape loss in Equation 3
of our paper, we set λseg = 1e2. Then the total loss for
end-to-end training can be summarized as:

L = Lbox + λLshape, (2)

where λ = 5e-3.

B. Efficiency and Memory in Inference
We train our network with two NVIDIA TITAN-Xp

GPUs and test it on a single GPU. Our method takes around
25 hours for training compared to 60 hours of [6]. We
also compare the inference timing in single forward pass
and GPU memory usage with [6] (see Table 3). It shows
that our method have comparable efficiency with the state-
of-the-art but requires much fewer memory (≈1/3), which
indicates that learning shapes directly from the raw point
cloud consumes fewer computation resource and hardware
requirement than processing 3D scenes with TSDF grids.

C. Detailed Quantitative Comparisons
In this section, we list the per-category scores of 3D de-

tection and object reconstruction in Table 1 and Table 2 (re-
fer to section 5.2 in the paper).

D. More Qualitative Comparisons
We provide more qualitative comparisons of semantic in-

stance reconstruction with [6] in Figure 6. As in Reveal-
Net [6], we use the groundtruth objects in Scan2CAD [1]
for supervision. Note that the groundtruth CAD models in
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Input table bathtub trashbin sofa chair cabinet bookshelf display mAP
3D-SIS [5] Geo+RGB 42.76 3.03 20.04 34.39 63.26 21.54 16.92 3.69 25.70
MLCVNet [12] Geo Only 44.51 22.39 10.10 53.13 78.74 26.34 22.93 8.90 33.40
RevealNet [6] Geo Only 35.64 14.94 26.77 29.96 53.18 26.63 15.89 31.30 29.29
Ours (w/o joint) Geo Only 46.67 19.09 15.30 51.71 77.22 24.62 18.58 7.03 32.63
Ours (w/ joint) Geo Only 49.90 23.63 15.69 52.34 79.88 26.72 23.20 9.23 35.10

Table 1: 3D object detection on ScanNet v2. 3D-SIS [5] and RevealNet [6] results are provided by the authors. MLCVNet
results are retrained with the original network [12]. Scores above are evaluated with mAP@0.5.

resolution table bathtub trashbin sofa chair cabinet bookshelf display 3D IoU
RevealNet [6] avg. 27-d 17.43 12.64 17.90 28.73 29.61 20.78 18.05 18.68 20.48
Ours (w/o joint) 16-d 16.08 32.74 36.24 46.51 35.53 45.71 33.55 39.63 35.75
Ours (w/o joint) 32-d 11.65 28.07 35.86 39.97 28.89 44.27 23.54 29.44 30.21
Ours (w/o joint) 64-d 20.68 29.46 25.43 24.19 23.55 30.84 22.43 23.20 24.97
Ours (w/ joint) 16-d 19.22 32.55 36.92 46.73 37.05 49.25 35.14 39.28 37.02
Ours (w/ joint) 32-d 15.24 28.55 36.09 41.47 30.91 47.03 24.94 30.27 31.81
Ours (w/ joint) 64-d 22.12 29.24 28.12 27.80 26.05 33.75 23.27 22.87 26.65

Table 2: Comparisons on object reconstruction. Scores above are measured with 3D mesh IoU.

Max. Time (s) Max. Memory (MB)
RevealNet [6] 0.72 4273
Ours 0.68 1239

Table 3: Maximal inference time (seconds) and GPU mem-
ory (MB) of a single forward pass in ScanNet v2 [2].

Scan2Cad are only partially labeled.
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(a) RevealNet [6] (Geo+Image) (b) RevealNet [6] (Geo Only) (c) Ours (Geo Only) (d) GT

Figure 6: Qualitative results of semantic instance reconstruction on ScanNet v2 [2]. Note that RevealNet [6] preprocesses
the scanned scenes into TSDF grids, while our method only uses the raw point clouds.
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