
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation
— Supplemental material —

Yuval Nirkin*

Facebook AI & Bar-Ilan University
Lior Wolf

Facebook AI & Tel Aviv University
Tal Hassner
Facebook AI

A. Feature division algorithm

Algorithm. 1 describes the signal channel division algo-
rithm referred to in Sec. 3.2. The algorithm starts by divid-
ing the channels, C, into units of size su. In our experi-
ments su = max(gw0 , . . . , gwn), which assures that the di-
vided channels will be divisible by their corresponding gwi ,
which are all power of 2.

Each weight is first allocated a single unit in order
to make sure minimal channel allocation for each of the
weights. The units are divided by their total number relative
to the sum of the weights, starting from the large weights.
This gives priority to the smaller weights, which receive the
remainder of the allocations that were rounded down.

B. Model details

The hyperparameters of each of our five models are laid
out in Tab. S1. Variables ri are the reduction factors, corre-
sponding to each of the features maps, Fi, from b, defined
in Sec. 3.1. gwi

, also defined in Sec. 3.1, equal 16 across all
levels for our earliest model, HyperSeg-L (PASCAL VOC),
and their values were experimentally adapted for the newer
models trained on CamVid and Cityscapes.

The last rows detail the number of feature map channels
in each mi. A single arrow, Cin → Cout, denotes a single
1×1 convolution pw1 : RCin× H

2i
×W

2i → RCout× H

2i
×W

2i , and
two arrows, Cin → Chidden → Cout, specify the channels
of the full meta block (described in Sec. 3.2):

pw1 : RCin× H

2i
×W

2i → RChidden× H

2i
×W

2i , (1)

dw : RChidden× H

2i
×W

2i → RChidden× H

2i
×W

2i , (2)

pw2 : RChidden× H

2i
×W

2i → RCout× H

2i
×W

2i (3)

Our PASCAL VOC model was trained using the cross
entropy loss; all other models were trained using boot-
strapped cross entropy loss [8].

*Performed this work while an intern at Facebook.

C. Additional ablation studies

Ablation study on PASCAL VOC. We tested multiple
variants of our method, to show the effects of employing
spatially varying convolutions and to evaluate the contribu-
tion of the positional encoding. We describe these variants
using the following terminology: 1 × 1 denotes evaluating
the entire image as a single patch. That is, we only generate
a single set of weights per input image. For this variant, we
completely remove network h. 16× 16 is the original num-
ber of patches used for reporting our results on PASCAL
VOC in Tab. 2.

Our ablation results are reported in Tab. S2. Evidently,
the larger the grid size, the better our accuracy. The contri-
bution of the positional encoding is significant, given that
the gap between the two best previous methods is 0.1%, as
can be seen in Tab. 2. As evident from the reported FPS
column, the 1 × 1 variant is the fastest because it does not
require unoptimized operations used for the DPWConv and
because the network h is absent.

Ablation study on Cityscapes. We test the effect of vary-
ing gwi , i ∈ [1, 5] in our HyperSeg-M model on resolutions
of 1536 × 768 and report results in Tab. S3. We fix the ra-
tio between the groups relative to |θmi | while maintaining
multiples of 2. We start by setting gw1

= 1 for the test
in the first row and then double the group number in each
subsequent test. The number of parameters and flops of wi
decreases as the number of groups increases, according to
Eq. 6 and Eq. 7. Surprisingly, the experiment in the middle
row provides the best GFLOPs / accuracy trade-off, achiev-
ing the best accuracy with fewer GFLOPs and parameters
than the first two tests.

D. Open source repositories
The open source repositories used in Tables 2, 3, and 4,

to report information about previous methods, which was
not available otherwise, are listed in Tab. S4. The protocol
for computing the FPS, GFLOPs, and trainable parameters,
is described in Sec. 4.
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Algorithm 1 Divides the channels, C, in unit size, su, into chunks relative to the weights, w0, . . . , wn.

1: procedure DIVIDE CHANNELS(C, su, w0, . . . , wn)
2: total units← C

su
3: w ← sort(w0, . . . , wn) . Descending order
4: r ← total units∑n

i=0 wi
. Units to weights ratio

5: out← {su| for each wi ∈ w} . Each weight group should be allocated with at least one unit
6: total units← total units− |out|
7: i← 0
8: while total units 6= 0 do
9: if i = n or bwi · rc ≤ 1 then

10: curr units← total units
11: else
12: curr units← bwi · rc − 1

13: outi ← outi + curr units · su
14: total units← total units− curr units
15: i← i+ 1

16: return out

Params HyperSeg-L
(PASCAL VOC)

HyperSeg-S
(Cityscapes)

HyperSeg-M
(Cityscapes)

HyperSeg-S
(CamVid)

HyperSeg-L
(CamVid)

Backbone EfficientNet-B3 EfficientNet-B1 EfficientNet-B1 EfficientNet-B1 EfficientNet-B1
Resolution 512× 512 1536× 768 1024× 512 768× 576 1024× 768
r1, . . . , r5 1/4, 1/4, 1/4, 1/4, 1/4 -, 2/5, 1/4, 1/5, 1/6 1/4, 1/4, 1/4, 1/4, 1/4 1/4, 1/4, 1/4, 1/4, 1/4 1/4, 1/4, 1/4, 1/4, 1/4
gw0 , . . . , gw5 16, 16, 16, 16, 16, 16 -, 4, 16, 8, 16, 32 -, 4, 16, 8, 16, 32 -, 8, 16, 32, 32, 64 8, 8, 16, 32, 32, 64
m5 channels 98 −→ 96 130 −→ 32 82 −→ 64 82 −→ 64 82 −→ 64
m4 channels 132 −→ 34 62 −→ 16 94 −→ 32 94 −→ 32 94 −→ 32
m3 channels 48 −→ 96 −→ 12 26 −→ 8 44 −→ 16 44 −→ 16 44 −→ 16
m2 channels 22 −→ 44 −→ 8 14 −→ 28 −→ 8 24 −→ 48 −→ 16 24 −→ 48 −→ 16 24 −→ 48 −→ 16
m1 channels 16 −→ 32 −→ 6 26 −→ 52 −→ 19 34 −→ 68 −→ 19 22 −→ 44 −→ 12 22 −→ 44 −→ 16
m0 channels 11 −→ 22 −→ 21 - - - 21 −→ 42 −→ 12

Table S1: Model details. Each row represents a different model hyperparameter and each column a different model, where
“HyperSeg-<size> (dataset)” is the model’s template name (see Sec. 4) and the dataset on which it was trained on. “-”
denotes that the decoder level corresponding to the specific hyperparameter was omitted.

Grid size Positional encoding mIoU (%) FPS
1× 1 7 77.56 46.8
4× 4 7 78.92 22.4
8× 8 7 80.23 26.9

16× 16 7 80.33 28.2
16× 16 X 80.61 26.8

Table S2: Ablation study on PASCAL VOC 2012, val.
set [4]. Each row represents a different model, trained with
the specified grid size, with or without positional encoding.

E. Convolution and batch normalization fusion

Following others [7], we fuse the convolution and batch
normalization operations in the inference stage for improv-

Groups mIoU GFLOPs |θw| Params
(%) (M) (M)

1, 2, 4, 4, 8 77.1 18.0 1.2 11.1
2, 4, 8, 8, 16 77.5 17.3 0.6 10.4

4, 8, 16, 16, 32 78.0 16.9 0.3 10.1
8, 16, 32, 32, 64 77.8 16.7 0.1 10.0

16, 32, 64, 64, 128 77.2 16.6 0.1 9.9

Table S3: Ablation study on Cityscapes, val. set [3]. The
Groups column represents: gw1

, . . . , gwn
.

ing the runtime performance. For regular convolutions, the
batch normalization operation is fused with its prior convo-
lution. The batch normalization operations following DP-
WConv are fused with the corresponding weight mapping
layer. We next provide more details on these steps.
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Method URL

Auto-DeepLab-L [5] https://github.com/MenghaoGuo/AutoDeeplab
DeepLabV3 [2] https://github.com/pytorch/vision
ERFNet [9] https://github.com/Eromera/erfnet_pytorch
ESPNetV2 [6] https://github.com/sacmehta/ESPNetv2
SwiftNetRN-18 [7] https://github.com/orsic/swiftnet
BiSeNetV1 [11] https://github.com/CoinCheung/BiSeNet
BiSeNetV2 [10] https://github.com/CoinCheung/BiSeNet

Table S4: List of open source repositories used for comparing to previous methods.

The batch normalization operation can be described in
the form of matrix multiplication, θBN ·x+bBN , for which
θBNi,i = γi√

σ2
i+ε

on the diagonal and zero everywhere else,

and bBNi = βi − γi µi√
σ2
i+ε

for i ∈ [0, C), where C is the

number of feature channels, γ is the scaling factor, β is the
shifting factor, µ and σ are the mean and standard deviation,
respectively, and ε is a scalar constant used for numeric sta-
bilization.

The convolution operation can also be written as a matrix
multiplication by reshaping its weights, θ∗, and input fea-
ture map, x, such that θ∗ ∈ RC×Cin×k2 and x̃ ∈ RCin×k2 ,
where x̃i,j is the k×k neighborhood in location (i, j) of the
original feature, x. The combined convolution and batch
normalization operations can then be written as:

Oi,j = θBN · (θ∗ · x̃i,j + b∗) + bBN . (4)

The fused convolution operation will then have the weights
θ̃∗ = θBN · θ∗ and bias b̃∗ = θBN · b∗ + bBN .

Similarly, the DPWConv operation on a patch location
(m,n) followed by batch normalization is:

Oi,j = θBN · [(θw · φm,n) · x̃i,j + bw] + bBN , (5)

where θw are the weights of the weight mapping layer
and φm,n is the signal corresponding to the patch in loca-
tion (m,n). The batch normalization operation can then
be fused into the weight mapping layer using the adjusted
weights, θ̃w = θBN · θw, and bias, b̃w = θBN · bw + bBN .

F. Additional qualitative results
Fig. S1 provides qualitative results on PASCAL VOC

2012 val. set [4]. In the first four rows we have specifically
chosen samples with different classes to best demonstrate
the performance of our model. The last two rows offer fail-
ure cases, top left: boat classified as a chair; bottom left: the
model failed to detect the bottles from a top view; top right:
dog classified as a cat; and bottom right: sheep classified as
a dog.

Fig. S2 shows qualitative results of our HyperSeg-L
model on the CamVid dataset test set [1]. The first four rows

display predictions on different scenes and the last two rows
demonstrate failures of our model: in the first row a bicy-
clist is partly segmented as a pedestrian, and in the last row
our model fails to detect a sign.
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Figure S1: Qualitative results on PASCAL VOC 2012 validation set [4]. First and 4th columns: input image, 2nd and 5th
columns: our predictions, and 3rd and final column: ground truth. The first four rows demonstrate how our model performs
on different classes. The last two rows present failure cases of our model.
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Figure S2: Qualitative results on CamVid test set [1]. The columns represent: input (left), prediction (center), and ground
truth (right). The first four rows provide samples from different scenes, and the last two rows demonstrate failure cases.
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