A. Example Augmented Algorithms

We detail the augmented examples from the generaliza-
tion section here. We provide the modified pseudocode
based on published papers and publically available code
for the evaluated algorithms Co-Teaching+ [34], M-DYR-
H [1], and DivideMix [14]. We bold the region where aug-
mentation is inserted. No hyperparamters were changed in
any of the experiments. All models used are the same as
those used in the originally published papers.

A.1. Augmented CoTeaching+

We provde the full implementation of the Co-Teaching+
[34] algorithm with our augmentations below. Co-
Teaching+ is similar to the original Co-Teaching [10], but
adds a different disagreement component when the two net-
work predictions are not similar. If the predictions are simi-
lar, training is conducted on the lower loss samples. We find
that adding strong augmentation to this part of the training
improves performance. Co-teaching uses a threshold R(e)
instead of a mixture model fitting to take advantage of the
memorization effect. The two network setup that it uses is
an effective technique in existing algorithms.

Algorithm 2: Augmented Co-Teaching+

Input 0™ and 6P, training dataset (X',)V), learning rate
7, fixed 7, epoch T}, and Tax, strong augmentation
function Augment.

0 = WarmUp(X, Y, 0)

while e < T,y do

for b =1to B do

Select prediction disagreement £’ from batch

Tp;
if |’| > 0 then
:E_b/(l) —
arg Ming, .|z’ |>x(e) |z’ | f(fb/; 9(1));
fb,(Q) —
arg ming, /: |,/ |>x(e)|a’| £('; 9(2));
00 = oM — pve(z, P;0M);
02 = 0@ — yvi(z O;02);
else

s

1 .
2 = argming o> Reyny) @0; 0
=@
b

6% =6 —Ve(Augment(z,”); 0
L 0 =0®) — Ve(Augment(z?); 0

s

s

)
= arg minzg:|zg|2R(e)\zb\ Z(wb’ 0(2))’

)

)

Update R(e) = 1 — min {%T, 7—};

T)

Output V) and 6.

A.2. Augmenting M-DYR-H

We provide the full implementation of M-DYR-H algo-
rithm from [1]. M-DYR-H warmup, and uses mixup train-

ing on input batches to obtain strong results. The loss is
weighted using a BMM that is fit to the loss from previ-
ous epochs. During warmup, we leave the existing weak-
augmentations in place. For the pseudolabel prediction z;
as well as the BMM modelling W, we use weak augmen-
tations. We insert strong augmentations during the mixup
process which is independent of what the network uses to
model the losses. We find that this can improve perfor-
mance.

Algorithm 3: Augmented M-DYR-H

Input: 6, training dataset (X',)V), Beta distribution
parameter « for mixup, strong augmentation function
Augment.

0 = WarmUp(X,), 0)

while e < MaxEpoch do

W = BMM(X,Y,0)

for b = 1to B do

26 = Pmodel (T1; 0)

wp, = compute_batch_probs(xy, W, yp)

m£VL7yl%7yl§>zl%a Zl?7w117w§7)‘ =

mixup(Augment(zy), Yp, 2b, W)

Zm = pmodel(xgn; 6)

L = (1 - w}) Y:NLLoss(log(zm), y7")/|zs|

Iy = wi S_NLLoss(log(zm), 23"/ |zs]

ls = (1~ w?) SNLLoss(log(zn), y3") /|s|

ls = wg Y_NLLoss(log(zm), 23")/|xs|

L=M1+1l)4+ 1 =N(s+14) + MLreg
| 0 =SGD(L,0)

Output 6.

A.3. Augmenting DivideMix

A full version of the algorithm outlined in DivideMix is
provided here (Algorithm 4). The technique is a combina-
tion of co-training, MixUp, loss modeling, and is trained in
a semi-supervised learning manner. Notation and algorithm
are as presented in the original paper [14]. We insert our
changes in bold.

Algorithm 4: Augmented DivideMix.

Input: 6 and 6, training dataset (X',)V), clean probability threshold 7, number of augmentations M, augmentation policies
Augment; and Augments, sharpening temperature 7°, unsupervised loss weight \,,, Beta distribution parameter « for
MixMatch.

oM 9@ :WarmUp(X,y,G(l),9<2)) // standard training (with confidence penalty)
while e < MaxEpoch do
w® :GMM(X,yﬁ(l)) // model per-sample loss with 0 to obtain clean probability
for 0P
wm :GMM(X,)AQ@)) // model per—-sample loss with 9@ to obtain clean probability
for W
fork =1,2do // train the two networks one by one
x0 = {(@i, ys, w)|wi > 7,¥(@i, ys, ws) € (X, Y, W)} // labeled training set for %)
u® = {zilwi < 7,Y(xi, w;) € (X, W)} // unlabeled training set for 6*

for iter = 1 to num_iters do
From X{*), draw a mini-batch {(zv,yp,ws);b € (1,...,B)}
From /"), draw a mini-batch {up;b € (1,...,B)}
for b = 1to B do
x5 = Augment; (z)
=Augment; ()
for m = 1to M do
Zb,m = Augment: ()
L Up,m = Augments (up)

udesc

Py = ﬁZmp,,,odel(i:b,m;G(k)) // average the predictions across augmentations of
Tp
g = weYp + (1 — ws)ps
// refine ground-truth label guided by the clean probability produced by
the other network
4p = Sharpen(gp, T) // apply temperature sharpening to the refined label
qp = ﬁ Zm (pmodel('ab,m; 0(1)) + pmodel(ﬁb,nﬁ 0(2)))
// co-guessing: average the predictions from both networks across
augmentations of wup
G» = Sharpen(q,T)
// apply temperature sharpening to the guessed label

// train using a different augmentation

X = {(z,y)|x € z%,y € §} // train with different augmentation
U = {(u,q)|u € u?®> q € 4} // train with different augmentation
Lx, Ly = MixMatch(zYA',Z:{) // apply MixMatch
L=Lx~+ Lu+ ArLreg // total loss

0F) = SGD(L, ™) // update model parameters

