
A. Example Augmented Algorithms
We detail the augmented examples from the generaliza-

tion section here. We provide the modified pseudocode
based on published papers and publically available code
for the evaluated algorithms Co-Teaching+ [34], M-DYR-
H [1], and DivideMix [14]. We bold the region where aug-
mentation is inserted. No hyperparamters were changed in
any of the experiments. All models used are the same as
those used in the originally published papers.

A.1. Augmented CoTeaching+

We provde the full implementation of the Co-Teaching+
[34] algorithm with our augmentations below. Co-
Teaching+ is similar to the original Co-Teaching [10], but
adds a different disagreement component when the two net-
work predictions are not similar. If the predictions are simi-
lar, training is conducted on the lower loss samples. We find
that adding strong augmentation to this part of the training
improves performance. Co-teaching uses a threshold R(e)
instead of a mixture model fitting to take advantage of the
memorization effect. The two network setup that it uses is
an effective technique in existing algorithms.

Algorithm 2: Augmented Co-Teaching+

Input θ(1) and θ(2), training dataset (X ,Y), learning rate
η, fixed τ , epoch Tk and Tmax, strong augmentation
function Augment.
θ = WarmUp(X ,Y, θ)
while e < Tmax do

for b = 1 to B do
Select prediction disagreement x̄b′ from batch
xb;
if |x̄b′| > 0 then

x̄b
′(1) =

arg minx̄b′:|x̄b′|≥λ(e)|x̄b′| `(x̄b
′; θ(1));

x̄b
′(2) =

arg minx̄b′:|x̄b′|≥λ(e)|x̄b′| `(x̄b
′; θ(2));

θ(1) = θ(1) − η∇`(x̄b
′(2); θ(1));

θ(2) = θ(2) − η∇`(x̄b
′(1); θ(2));

else
x

(1)
b = arg minx′

b
:|x′

b
|≥R(e)|xb| `(xb; θ

(1));

x
(2)
b = arg minx′

b
:|x′

b
|≥R(e)|xb| `(xb; θ

(2));

θ(1) = θ(1) − η∇`(Augment(x(1)
b); θ(1));

θ(2) = θ(2) − η∇`(Augment(x(2)
b); θ(2));

Update R(e) = 1−min
{

e
Tk
τ, τ
}

;

Output θ(1) and θ(2).

A.2. Augmenting M-DYR-H

We provide the full implementation of M-DYR-H algo-
rithm from [1]. M-DYR-H warmup, and uses mixup train-

ing on input batches to obtain strong results. The loss is
weighted using a BMM that is fit to the loss from previ-
ous epochs. During warmup, we leave the existing weak-
augmentations in place. For the pseudolabel prediction zb
as well as the BMM modelling W , we use weak augmen-
tations. We insert strong augmentations during the mixup
process which is independent of what the network uses to
model the losses. We find that this can improve perfor-
mance.

Algorithm 3: Augmented M-DYR-H

Input: θ, training dataset (X ,Y), Beta distribution
parameter α for mixup, strong augmentation function
Augment.
θ = WarmUp(X ,Y, θ)
while e < MaxEpoch do
W = BMM(X ,Y, θ)
for b = 1 to B do

zb = pmodel(xb; θ)
wb = compute_batch_probs(xb,W, yb)
xmb , y

1
b , y

2
b , z

1
b , z

2
b , w

1
b , w

2
b , λ =

mixup(Augment(xb), yb, zb, wb)
zm = pmodel(x

m
b ; θ)

l1 = (1− w1
b)
∑

NLLoss(log(zm), ym1)/|xb|
l2 = w1

b

∑
NLLoss(log(zm), zm1)/|xb|

l3 = (1− w2
b)
∑

NLLoss(log(zm), ym2)/|xb|
l4 = w2

b

∑
NLLoss(log(zm), zm2)/|xb|

L = λ(l1 + l2) + (1− λ)(l3 + l4) + λrLreg
θ = SGD(L, θ)

Output θ.

A.3. Augmenting DivideMix

A full version of the algorithm outlined in DivideMix is
provided here (Algorithm 4). The technique is a combina-
tion of co-training, MixUp, loss modeling, and is trained in
a semi-supervised learning manner. Notation and algorithm
are as presented in the original paper [14]. We insert our
changes in bold.

Algorithm 4: Augmented DivideMix.

Input: θ(1) and θ(2), training dataset (X ,Y), clean probability threshold τ , number of augmentations M , augmentation policies
Augment1 and Augment2, sharpening temperature T , unsupervised loss weight λu, Beta distribution parameter α for
MixMatch.
θ(1), θ(2) = WarmUp(X ,Y, θ(1), θ(2)) // standard training (with confidence penalty)
while e < MaxEpoch do
W(2) = GMM(X ,Y, θ(1)) // model per-sample loss with θ(1) to obtain clean probability

for θ(2)

W(1) = GMM(X ,Y, θ(2)) // model per-sample loss with θ(2) to obtain clean probability

for θ(1)

for k = 1, 2 do // train the two networks one by one

X (k)
e = {(xi, yi, wi)|wi ≥ τ,∀(xi, yi, wi) ∈ (X ,Y,W(k))} // labeled training set for θ(k)

U (k)
e = {xi|wi < τ,∀(xi, wi) ∈ (X ,W(k))} // unlabeled training set for θ(k)

for iter = 1 to num_iters do
From X (k)

e , draw a mini-batch {(xb, yb, wb); b ∈ (1, ..., B)}
From U (k)

e , draw a mini-batch {ub; b ∈ (1, ..., B)}
for b = 1 to B do

xdesc = Augment2 (xb)
udesc =Augment2 (xb)
for m = 1 to M do

x̂b,m = Augment1(xb)
ûb,m = Augment1(ub)

pb = 1
M

∑
m pmodel(x̂b,m; θ(k)) // average the predictions across augmentations of

xb
ȳb = wbyb + (1− wb)pb

// refine ground-truth label guided by the clean probability produced by
the other network
ŷb = Sharpen(ȳb, T) // apply temperature sharpening to the refined label

q̄b = 1
2M

∑
m

(
pmodel(ûb,m; θ(1)) + pmodel(ûb,m; θ(2))

)
// co-guessing: average the predictions from both networks across

augmentations of ub
q̂b = Sharpen(q̄b, T)

// apply temperature sharpening to the guessed label

// train using a different augmentation
X̂ = {(x, y)|x ∈ xdesc, y ∈ ŷ} // train with different augmentation

Û = {(u, q)|u ∈ udesc, q ∈ q̂} // train with different augmentation

LX ,LU = MixMatch(X̂ , Û) // apply MixMatch
L = LX + λuLU + λrLreg // total loss

θ(k) = SGD(L, θ(k)) // update model parameters

