Supplementary Material
HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object Detection

Jongyoun Noh

Sanghoon Lee

Bumsub Ham*

School of Electrical and Electronic Engineering, Yonsei University

1. Implementation details

Point-based and voxel-based features. For each 3D
scene, we subsample 16,384 point clouds, and use them as
our inputs. We exploit PointNet++ [4], consisting of set
abstraction (SA) and feature propagation (FP) layers, to ex-
tract point-based features. Specifically, we use two SA lay-
ers to downsample the number of point clouds from 16,384
to 4,096 and 1,024, respectively. We then obtain the point-
based features of size 64 x 1 for each input point cloud after
applying two FP layers. To extract voxel-based features, we
use a multi-layer perceptron (MLP) consisting of two hid-
den layers, whose channel sizes are 32 and 64, respectively.

Backbone network. Our backbone network consists of
three convolutional blocks, where each block extracts a fea-
ture map of a specific scale. See Fig. 2 in the main pa-
per (Backbone Network with AMFM). Each block has three
2D convolutional, BatchNorm [2] and ReLU layers. For the
first layer of each block, we exploit a convolution with stride
2 in order to downsample input feature maps. The sizes of
output channels for feature maps are 128, 256, and 512, re-
spectively, for each block, and the filter size is set to 3 for
all layers.

AMFM. We use a MLP with two hidden layers with chan-
nel sizes of 16 and 32, respectively, to obtain voxel-wise
representations of the 3D scale features. We adopt a 3 x 3
convolutional layer to produce a spatial attention map in
AMFM. We upsample scale-aware features with a trans-
posed convolution, such that they have the same spatial res-
olution and channel size as the largest one. See Fig. 2 in the
main paper (Backbone Network with AMFM).

Detection head. We use two fully connected layers with
384 channels to localize and classify objects.

Settings for the pedestrian class. For the pedestrian
class, we train our network for 200 epochs, with a learning
rate of 2e-4 and a weight decay of le-4. The learning rate is
decayed by a factor of 0.8 every 15 epochs. Batch size is set

*Corresponding author.

Table 1: Runtime analysis for each step of our model.

Step Time
Data preprocessing 1.2 ms
Voxel encoder 1.5 ms
Pseudo image w/ memory 3.2 ms
Backbone w/ AMFM 9.9 ms
Head and post-processing 11.9 ms

to 1 for each GPU. We apply a global translation, where a
translation factor is drawn from (0, 0.2), in addition to the
data augmentation techniques as for the car class. The pa-
rameters of our model for the pedestrian class are the same
with the ones for the car class except for the number of pro-
totypes (K = 20 for car, K = 10 for pedestrian). For other
parameters, we use the same setting as in [3] as follows: As-
suming that the dimension of a 3D scene (W, H, L) is within
a range of [(0,48), (—20,20), (—2.5,0.5)] meters. We set
the size of anchors to 0.6 x 0.8 x 1.73. We choose the an-
chors with the IoU scores larger than 0.5 as positive boxes,
while those lower than 0.35 are used as negative ones. We
use (0.16,0.16,4) as the size of a voxel, vy X vy X v,.
The number of point clouds within each voxel N, and the
size of augmented point clouds D are set to 100 and 9, re-
spectively.

2. More results

Runtime analysis. The average runtime of our full model
for the car class is 27.7 milliseconds with an Nvidia 2080Ti
GPU. The detailed runtime for each step is shown in Ta-
ble 1. We can see that most computation time is spent for
the backbone network and the post processing. Estimating
a pseudo image just takes 4.7 milliseconds.

AMFM. We visualize in Fig. | activations of multi-scale
and scale-aware features from the first and the second
blocks in a backbone network. Note that the scale-aware
features are obtained by applying AMFM to multi-scale fea-
tures. We can see that scale-aware features highly activate
on decisive regions, compared to multi-scale ones. More
specifically, the scale-aware features from the first block,



which are of high-resolution, activate on small or distant
objects, while suppressing the features near a LiDAR sen-
sor. The features from the second block, on the other hand,
are of low-resolution. They attend more to regions near the
sensor typically containing large objects. This suggests that
AMEFM allows our network to consider complex scale vari-
ations for object localization.

Qualitative results. We visualize in Fig. 2 detection re-
sults on the validation split of KITTI [I]. We can see
that our model localizes small and/or occluded objects with
sparse point clouds well. This indicates our hybrid 3D rep-
resentation and scale-aware features are effective to localize
hard examples and robust to complex scale variations. We
also show failure examples in the last row of Fig. 2. Our
model misses the heavily occluded objects, e.g., in the left
and middle images, some of which are not visible even in
the RGB image. It also does not localize the object captured
with little or no point clouds as shown in the right image.

References

[1] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the KITTI vision benchmark
suite. In CVPR, 2012. 2, 4

[2] Sergey loffe and Christian Szegedy. Batch normalization: Ac-
celerating deep network training by reducing internal covari-
ate shift. In ICML, 2015. 1

[3] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. In CVPR, 2019. 1

[4] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NeurIPS, 2017. 1



0.75

=

[T

=

<

2 0.50

3 _0.

o

=

o
_ 025
_ 0.00
_-0.25

=

w

=

<

§ -0.50

2

<

=)

(@] -0.75

= 0.75

L

=

<

2 0.50

S _0.

&2

S

o
_ 025
_0.00
_-0.25

=

L

=

<

< -0.50

£

2

&2

S

o -0.75

Block1 (216 X 248) Block2 (108 X 124)

Figure 1: Qualitative comparison of multi-scale and scale-aware features from the first and the second blocks in the backbone network. We
visualize feature activations w.r.t input point clouds. The numbers in parentheses indicate a spatial resolution of a feature map, and the red
boxes show ground-truth objects. See text for details.



Figure 2: Qualitative results on the validation split of KITTI [1]. Our predictions and ground-truth bounding boxes are shown in green
and red, respectively. We also show 2D bounding boxes projected from 3D detection results. The last row shows some failure cases. Best
viewed in color.



