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We present a detailed analysis for hyperparame-
ters (Sec. 1), and provide a quantitative comparison between
GAP and BAP (Sec. 2). We also show runtime comparisons
of our pseudo label generator and other methods (Sec. 3).
We then compare dot product based and cosine similarity
based classifiers for semantic segmentation (Sec. 4), and
describe training losses in detail (Sec. 5). We finally show
more quantitative and qualitative results on PASCAL VOC
2012 [3] and MS-COCO [9] (Sec. 6).

1. Hyperparameters

Grid size (V). To analyze an effect of a grid size, we
use different grid sizes for training a classification net-
work using BAP and for generating pseudo segmentation la-
bels (i.e., ug). Table 1(a) compares performance of pseudo
labels on the PASCAL VOC 2012 [3] train set. We can
see that training with a single query (i.e., N = 1) pro-
vides the worst result. A plausible explanation is that a def-
inite background might contain inhomogeneous clutter, and
thus a larger grid size can help the classification network
to use diverse queries, acting as a regularizer. On the other
hand, for generating pseudo labels, we empirically find that
a smaller grid size tends to give better results. Accordingly,
we set the grid size N to 4 for training the classification
network, and to 1 for generating pseudo labels. We also
show in Table 1(b) segmentation results, trained with corre-
sponding pseudo labels in Table 1(a), on the PASCAL VOC
2012 val set. To this end, we use DeepLab-V1 [1, 2] with
the standard cross-entropy loss. We can see that more accu-
rate pseudo labels give better segmentation results.
Damping and balance parameters (v and )\). We show
in Fig. 1(a) an effect of damping parameters on confidence
scores o(p) = (a(p))”, where

Dc* (p)
max.(D.(p))’

Note that confidence scores turn into binary ones with a
large value of ~, similar to BCM [15]. We show in Fig. 1(b)

a(p) = 6]
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Table 1: (a) Comparison of our pseudo labels Y+ using dif-
ferent grid sizes on the PASCAL VOC 2012 [3] train set
in terms of mloU. (b) Comparison of mloU scores using
DeepLab-V1 [1, 2], trained with corresponding pseudo la-
bels in (a), on the PASCAL VOC 2012 val set. The best
performance is reported in bold and the second best is un-
derlined.
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Figure 1: (a) Confidence scores ¢ with different damp-
ing parameters . (b) Comparison of mloU scores for dif-
ferent hyperparameters (v and ) on the PASCAL VOC
2012 [3] val set. Best viewed in color.

the performance of DeepLab-V1 [I, 2] for different pa-
rameters ¥ and A on the PASCAL VOC 2012 [3] val set.
We select a pair of parameters which provides the best re-
sult (i.e., vy =7, A=0.1).

2. Comparison of GAP and BAP

To further verify that BAP gives better CAMs [17]
than GAP, we quantify the quality of CAMs for differ-
ent pooling methods. To this end, we consider normal-
ized CAM scores u,. (Eq. (5) of the main paper) as True-




Table 2: Quantitative comparison of CAMs using different pooling methods on the PASCAL VOC 2012 [3] train set.

Method | aero bike bird boat bot bus car cat cha cow

tab dog hor mbik pers plnt she sofa trai tv | mean

GAP 62.7 273 684 59.1 862 914 86.7 833 515 826 746 816 747 697 672 682 790 695 841 92.1| 73.0
BAP 699 682 719 70.7 842 935 875 883 572 847 664 850 758 79.1 715 79.0 83.1 66.0 888 87.1| 779

Table 3: Comparison of mIoU scores on the PASCAL VOC
2012 [3] val set.

Method val
Architecture: DeepLab-V1 [1, 2]
SDI [7] 65.7
BCM [15] 66.8
Ours w/ NAL
GAP 66.3
BAP 68.1
Architecture: DeepLab-V2 [2]
SDI [7] 74.2
BCM [15] 70.2
Ours w/ NAL
GAP 72.6
BAP 74.6

Table 4: Runtime comparison of our pseudo label genera-
tor and other segmentation methods. We report the average
runtime on the PASCAL VOC 2012 [3] val set.

Times (s) | GrabCut [14] MCG [11] WSSL[10] Ours
CPU 1.9 25.5 04 0.4
GPU - - - 0.1
Total 1.9 25.5 04 0.5

Positives (TP,.) if they are activated inside ground-truth re-
gions for a class c. Otherwise, we regard them as False-
Positives (FP.). We define the precision for the class c
as: TPCTE“FPC. We compare in Table 2 the per-class pre-
cision of CAMs obtained with different pooling methods.
We can clearly see that BAP outperforms GAP, especially
for bike, boat, and plant classes. A plausible reason is
that GAP may hinder classifier weights since it aggregates
a mixture of foreground and background features inside ob-
ject bounding boxes. BAP overcomes this problem by com-
puting a background attention map adaptively, encouraging
the classifier weights to focus more on foreground features.
We also evaluate the classification networks using differ-
ent pooling methods on the PASCAL VOC 2012 [3] val set.
To this end, we consider ground-truth boxes as pre-obtained
ones to crop each object. We find that the classification ac-
curacy increases from 80.3% to 82.3% by using BAP in-
stead of GAP. This suggests that BAP could be helpful in
improving object classification/detection performance.
Table 3 shows mloU scores of DeepLab-V1 and -V2 [,
], trained with different pseudo labels using GAP or BAP,
on the PASCAL VOC 2012 wal set. We can see that the
models trained with the pseudo labels using GAP (‘GAP’)
achieve competitive mloU scores to BCM [ 5], demonstrat-
ing once again the effectiveness of our approach to using a
classification network with bounding boxes.

Table 5: Comparison of mloU scores using DeepLab-V1 [,

] on the PASCALS VOC 2012 [3] val set. For our NAL,
we use two different classifiers. DP: a dot product based
classifier. CS: a cosine similarity based classifier.

Method val
SDI [7] 65.7
BCM [15] 66.8
Ours w/ NAL
using DP 67.8
using CS (7 = 20) 68.1

Table 6: Results of DeepLab-V2 with different initializa-
tion on the PASCAL VOC 2012 [3] val set. Numbers in
brackets indicate fully-supervised performance. FS denotes
performance relative to the fully-supervised one.

w/ ImageNet w/ MS-COCO
Method mloU  FS | mloU  FS
SDI [7] 69.4 (74.5) 932 | 742(77.7) 955
BCM [15] - - 70.2 (74.5) 942
Ours w/ NAL 709 (73.4) 96.6 | 74.6 (77.5) 96.3

3. Runtime

We show in Table 4 a runtime comparison for generating
pseudo labels. For fair comparison, we use a NVIDIA Titan
RTX GPU with an Intel i5 3.7GHz for all experiments. For
the result of MCG [11], we use a publicly available MAT-
LAB implementation, and choose the best segment proposal
for each bounding box. Our pseudo label generator mainly
consists of two parts: (1) feature extraction with computing
a unary term (i.e., u. and ug); (2) DenseCRF [8]. The first
part takes 0.1 seconds on the GPU and the second one takes
0.4 seconds on the CPU. WSSL also adopts DenseCRF to
generate pseudo segmentation labels from object bounding
boxes. Compared to WSSL, our pseudo label generator re-
quires a negligible overhead (0.1 seconds), while it brings
substantial mIoU gains. For example, our pseudo labels Y
achieve the mIoU gain of 9.0/8.1% over WSSL on the PAS-
CAL VOC 2012 [3] train/val sets (see Table 1 in the main

paper).

4. Classifier for semantic segmentation

Here we provide a detailed description of two different
classifiers for semantic segmentation. First, a dot prod-
uct (DP) based classifier computes a probability for a class ¢

as follows:
e¢(p)'WC

G )

H.(p) =



Table 7: Per-class results of DeepLab-V1 [1, 2] in terms of mIoU on the PASCAL VOC 2012 [3] dataset: (a) the results on
the val set, (b) the results on the test set. All numbers except for ours are taken from corresponding papers.

Method bkg aero bike bird boat bot bus car cat cha cow tab dog hor mbik pers plnt she sofa trai tv | mean

SDI [7]

65.7

BCM [15] 89.8 683 27.1 73.7 564 72.6 842 756 79.9 352 783 532 77.6 664 68.1 73.1 56.8 80.1 45.1 74.7 54.6| 66.8
Ours w/ NAL | 91.0 78.1 30.8 83.1 624 67.7 859 784 832 348 773 527 762 73.6 703 74.0 499 77.7 40.5 79.3 64.6| 68.1

(@
Method bkg aero bike bird boat bot bus car cat cha cow tab dog hor mbik pers plnt she sofa trai tv | mean
SDI [7] - 781 31.1 724 61.0 67.2 842 782 81.7 27.6 685 62.1 769 70.8 782 763 51.7 783 483 742 58.6| 67.5

Ours w/ NAL | 91.7 80.5 32.5 80.5 61.1 66.2 86.6 79.2 854 28.6 73.6 60.8 79.4 71.5 782 739 57.5 81.1 482 78.7 62.8| 69.4

(b)

Table 8: Per-class results of DeepLab-V2 [2] in terms of mIoU on the PASCAL VOC 2012 [3] dataset: (a) the results on
the val set, (b) the results on the test set. All numbers except for ours are taken from corresponding papers.

Method bkg aero bike bird boat bot bus car cat cha cow tab dog hor mbik pers plnt she sofa trai tv | mean

SDI [7] - - - - - - - - - - - - - - - - - - - - - | 742

BCM [15] - - - - - - - - - - - - - - - - - - - - - | 702

Ours w/ NAL | 93.1 83.8 33.1 87.4 64.1 783 932 844 89.3 393 842 619 852 80.1 769 79.4 57.5 84.6 519 858 74.7| 74.6
(@)

Method bkg aero bike bird boat bot bus car cat cha cow tab dog hor mbik pers plnt she sofa trai tv | mean

Ours w/ NAL | 93.6 85.0 345 90.4 652 759 92.0 852 91.3 384 849 67.6 86.6 858 823 793 623 87.7 60.0 81.8 69.2| 76.1

We omit bias terms to make the classifier weight W to be
more representative for corresponding classes. The classi-
fier weights depend on both magnitude and direction of the
features ¢, and thus this classifier is not robust to intra-class
variations. It has recently been shown that a cosine simi-
larity (CS) based classifier could outperform the DP based
one [4, 12, 16]. Specifically, the CS based classifier modi-
fies Eq. (2) as follows:

He(p) = — > 3)

where we denote by 7 a scale parameter. This encour-
ages classifier weights and features to lie on a hypersphere,
whose radius is 7. Since this classifier considers the angle
between the feature ¢ and the classifier WW; only, we expect
that it is more robust against intra-class variations than the
DP based one.

We report in Table 5 mloU scores of DeepLab-V1 [1, 2]
using DP and CS based classifiers on the PASCAL VOC
2012 [3] val set. We can see that the CS based classifier
outperforms the DP based one slightly. Accordingly, we
exploit the CS based classifier with the scale parameter 7 of
20. It is worth noting that our model using the DP based
classifier still outperforms the state of the art [7, 15].

5. Training losses

We describe more details on training losses to deal with
the unreliable regions ~S (see Table 3 in the main paper).

(b)

We define entropy regularization [5] as follows:

1
LER:_m > > He(p)logH(p), (4

peE~S ¢

where | - | indicates the number of pixels. This encourages
a (L 4+ 1)-dimensional probability map H to have one clear
peak at each position p for a confident prediction. The over-
all loss is defined as follows:

L=Lc+ ANLER, )

where we set A to 0.1. Motivated by the work of [13], we
also use a bootstrapping technique as follows:

1
EBS:_W > > Yup)logH(p), (6)

pe~S ¢

where Y, indicates the c-th element of a new target Y.
Specifically, we define the new target vector at each posi-
tion p as follows:

Y(p) = By(p) + (1 - B)H(p), (7

where [ is a balance parameter between pseudo ground-
truth labels Y; and model predictions H. y is a (L + 1)-
dimensional one-hot vector, with a value of 1 at the c-th
dimension, where ¢ = Y ¢(p). The bootstrapping tech-
nique is similar to an EM-like algorithm, where the new
target vector is estimated in the E-step, and the model is op-
timized to better predict such a new target in the M-step. We
adjust the balance parameter 5 from 1 to 0 by using the poly



schedule during training. The overall loss is then defined as
follows:

L=Lec+ALBs, (®)

where we also set A to 0.1.

6. More segmentation results

PASCAL VOC. To test fully-supervised performance, we
train DeepLab-V1 [I, 2] with ground-truth segmentation
labels, achieving a mIoU score of 69.5% on the PASCAL
VOC 2012 [3] val set. This is similar to the mIoU scores
of 69.1% and 69.8% reported in [7, 15], respectively. We
show in Table 6 mloU scores of DeepLab-V2 [2] using
different initialization. For comparison, we also provide
fully-supervised performance. We can see that our approach
gives better results than other methods.

Table 7 compares per-class mloU scores of DeepLab-V1
on the PASCAL VOC 2012 dataset. We can clearly see
that our approach outperforms other WSSS methods by a
large margin on both val and test sets. For example, our
approach gives better results than BCM and SDI [7] for 13
and 14 classes, respectively. This demonstrates the impor-
tance of high-quality pseudo labels. We also provide in Ta-
ble 8 per-class mloU scores of DeepLab-V2 on the same
dataset. Compared to the results of Table 7, we can see that
using a deeper CNN improves the mloU performance for all
classes, achieving a new state of the art.

We show in Fig. 2 visual examples of ., u,, and pseudo

segmentation labels. We can see that our approach using
BAP generates high-quality background attention maps u,,
leading to better CAMs u.. Also, we show that Y is ef-
fective to identify unreliable regions. For example, the per-
son’s legs in the fourth row are incorrectly labeled as a cow
class, which can be marked by our approach. We show
in Figs. 3 and 4 qualitative results of DeepLab-V1 and -
V2 on the PASCAL VOC 2012 dataset, respectively. We
can see that the networks trained with pseudo segmenta-
tion labels only (Weak) already yield satisfactory results,
and exploiting a small number of ground-truth pixel-level
labels (Semi) provides more accurate results with sharp ob-
ject boundaries. The last rows for each figure show failure
examples.
MS-COCO. We show in Table 9 AP scores of Mask-
RCNN [6] on the MS-COCO [9] test set. We train Mask-
RCNN with each of our pseudo labels, i.e., Yf and Y. The
behavior of AP scores is similar to that of mloU scores for
semantic segmentation (see Tables 4 and 5 in the main pa-
per). Compared to the results of Table 6 in the main paper,
we find that exploiting both Y,s and Y} gives better results
especially for AP, AP5y, AP75, APg, and AP,,. This again
confirms two pseudo labels Y+ and Y;.; are complementary
to each other.

In Fig. 5, we show visual examples of pseudo segmen-

Table 9: Quantitative comparison of Mask-RCNN [6],
trained with either Y.+ or Y., on the MS-COCO [9] test
set.

Method AP APs5o AP75 APs APp; APp,
VOC-to-COCO
BAP: Y ¢ 170 356 144 58 16.6 284
BAP: Yiet 127 351 6.5 6.1 125 19.2
COCO-to-COCO
BAP: Y¢ 20.7 419 184 8.0 202 322
BAP: Yiet 17.5 435 115 89 16.7 249

tation labels on the MS-COCO train set. We find that
pseudo labels of VOC-to-COCO show reasonable results
even for unseen classes (e.g., giraffe and pizza classes),
demonstrating the effectiveness of our pseudo label gener-
ator. We also show in Fig. 6 instance segmentation results
of Mask-RCNN on the MS-COCO dataset. We can see that
the model trained with COCO-to-COCO gives better results
than the one using VOC-to-COCO.

References

[1] Liang-Chieh Chen, George Papandreou, lasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Semantic image seg-
mentation with deep convolutional nets and fully connected
CRFs. In ICLR, 2015. 1,2,3,4,6

[2] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. DeepLab: Semantic im-
age segmentation with deep convolutional nets, atrous con-
volution, and fully connected CRFs. [EEE Trans. PAMI,
40(4):834-848,2018. 1, 2,3,4,6,7

[3] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (VOC) challenge. IJCV, 88(2):303-338, 2010. 1, 2,
3,4,5,6,7

[4] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot
visual learning without forgetting. In CVPR, 2018. 3

[5] Yves Grandvalet and Yoshua Bengio. Semi-supervised
learning by entropy minimization. In NeurIPS, 2005. 3

[6] Kaiming He, Georgia Gkioxari, Piotr Dollér, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017. 4,9

[7] Anna Khoreva, Rodrigo Benenson, Jan Hosang, Matthias
Hein, and Bernt Schiele. Simple Does It: Weakly supervised
instance and semantic segmentation. In CVPR, 2017. 2, 3, 4

[8] Philipp Krihenbiihl and Vladlen Koltun. Efficient inference
in fully connected CRFs with gaussian edge potentials. In
NeurIPS, 2011. 2

[9] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV,2014. 1,4,8,9

[10] George Papandreou, Liang-Chieh Chen, Kevin P Murphy,
and Alan L Yuille. Weakly-and semi-supervised learning of
a deep convolutional network for semantic image segmenta-
tion. In ICCV, 2015. 2

[11] Jordi Pont-Tuset, Pablo Arbelaez, Jonathan T Barron, Fer-
ran Marques, and Jitendra Malik. Multiscale combinatorial



Input image. Ue. Uo

Ground truth.

Ours™.

Ours.

Figure 2: Visual examples of u., ug, and corresponding pseudo segmentation labels on the PASCAL VOC 2012 [3] train
set. We overlap u. over different classes for visualization. Ours: our pseudo labels Y. Ours*: the same ones but with an

indication of unreliable regions using Y. Best viewed in color.

[12]

[13]

(14]

grouping for image segmentation and object proposal gener-
ation. IEEE Trans. PAMI, 39(1):128-140, 2016. 2

Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L Yuille. Few-
shot image recognition by predicting parameters from activa-
tions. In CVPR, 2018. 3

Scott Reed, Honglak Lee, Dragomir Anguelov, Christian
Szegedy, Dumitru Erhan, and Andrew Rabinovich. Train-
ing deep neural networks on noisy labels with bootstrapping.
In ICLR, 2015. 3

Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.
“GrabCut” interactive foreground extraction using iterated
graph cuts. In SIGGRAPH, 2004. 2

(15]

(16]

(17]

Chunfeng Song, Yan Huang, Wanli Ouyang, and Liang
Wang. Box-driven class-wise region masking and filling rate
guided loss for weakly supervised semantic segmentation. In
CVPR,2019. 1,2,3,4

Tongzhou Wang and Phillip Isola. Understanding contrastive
representation learning through alignment and uniformity on
the hypersphere. ICML, 2020. 3

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimi-
native localization. In CVPR, 2016. 1



\> I
i -
Y ;{‘V .
i -
‘7 : -
s
' .

it
N 1 A
1
/ A

Input image.  Ours (Weak).  Ours (Semi).  Ground truth.

Input image. Ours (Weak). Ours (Semi).
(a) Results on val set. (b) Results on test set.

Figure 3: Qualitative examples of our final model using DeepLab-V1 [I, 2] on the PASCAL VOC 2012 [3] dataset. Best
viewed in color.



Input image.  Ours (Weak).  Ours (Semi).  Ground truth.

Input image. Ours (Weak). Ours (Semi).
(a) Results on val set. (b) Results on test set.

Figure 4: Qualitative examples of our final model using DeepLab-V2 [2] on the PASCAL VOC 2012 [3] dataset. Best viewed
in color.
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VOC-to-COCO COCO-to-COCO

Figure 5: Visual examples of pseudo segmentation labels on the MS-COCO [9] train set. Note that VOC-to-COCO do not
use any training samples of MS-COCO during training. Best viewed in color.
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(a) Results on val set. (b) Results on test set.

Figure 6: Qualitative results of Mask-RCNN [6] on the MS-COCO [9] dataset. We train Mask-RCNN with two pseudo
labels Y, and Y, and compute the binary cross-entropy loss for the regions S only. Best viewed in color.



