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1. Overview

This document provides additional information about the

proposed method. First, we continue the discussion on

training and architecture details of our method and the base-

lines. We use the official pre-trained models for Church,

Cars and Horses [3], and a 256 x 256 resolution pre-trained

model for FFHQ.1. The generator’s (G) and the discrimina-

tor’s (Dimg) architecture are the same as StyleGAN2. For

Dpch, we consider the first l layers of Dimg , and convert

the corresponding feature to a N×N output, where each

member’s receptive field corresponds to a patch in the in-

put image. We use Adam optimizer [4], and use the rest of

the hyperparameters (e.g. learing rate) from [3]. The ideal

training duration for adapting to different target domains is

as follows: for domains whose appearance matches very

closely with the source, i.e. babies/sunglasses with FFHQ

as source, we get good results within 1000 iterations. For

other face-based target domains (e.g. Modigliani’s paint-

ings), we train our models for 5000 iterations to get de-

cent results. For more complex domains (e.g. landscape

drawings), we observe our best results at around 10000 it-

erations. Note that in eq. 4 (main paper), we have used

z ∼ pz(z) instead of z ∼ pz(z)− Zanch for the second

term. This is because if an image from Zanch is (globally)

realistic, its patches will be realistic as well. Also note that

the other way around is not true.

Details about MineGAN We use the publicly available

code of MineGAN2 to produce its results (Fig. 4, Tab 1/2).

However, since there is an involvement of an additional

miner network during the adaptation process, we tried ex-

perimenting with smaller networks (than the default) for the

extreme few-shot setting (10 training images). The results

obtained were similar to the default setting – FID: 96.72,

68.67 for babies and sunglasses domain respectively, sug-

gesting that reducing the complexity of the miner network

1We use https://github.com/rosinality/stylegan2-pytorch
2https://github.com/yaxingwang/MineGAN/tree/master/styleGAN

alone is not sufficient to achieve better results.

FFHQ → face domains Fig. 1 shows the real images

used for different target domains in our experiments (apart

from those presented in the main paper). Next, we show the

results of translating a source model trained on natural faces

(FFHQ) to different kinds of target domains. We observe

the diversity in the generated images, which come as a result

of preserving correspondence between the source and target

distribution. Fig. 3 shows more examples for the idea dis-

cussed in Fig. 8 of the main paper. These four caricature im-

ages are unseen during the adaptation of a source model X

(X is FFHQ/Church/Cars/Horses) to the caricature domain.

We again observe that adapting FFHQ (natural faces) to the

caricature domain best embeds and reconstructs unseen im-

ages, indicating that caricature as a domain is most related

to FFHQ than any other source domain. Fig. 4 presents an

extension of Fig. 9 of main paper, where we study the 1-

shot, 5-shot and 10-shot setting for two baselines, and com-

pare it with our method. We notice that both FreezeD and

EWC, overfit to the target sample in 1-shot setting, generat-

ing virtually identical sketches/scenes. This trend of over-

fitting for these baselines continues in 5/10-shot settings as

well, where generations collapse to small variations around

a few modes. Our method, on the other hand, takes the ben-

efit of increasing training data size, by learning to generate

more and more diverse samples, different from the images

used for training.

Visualizing the clusters Fig. 5 visualizes the clustering-

based diversity assessment introduced in Sec. 4.1 of the

main paper. We group the generated images from a method

into k clusters, with the k training images serving as the

cluster center. After this, we study the resulting clusters,

where we visualize how similar is (i) the closest member to

the center (measured via LPIPS), (ii) the farthest member

to the center. The intuition is that a method whose gener-

ated images overfit to the training data will result in clus-



ters where the closest member is very similar to the corre-

sponding cluster center. Each column deals with one clus-

ter, where the cluster centers (real images used for train-

ing) are shown in the middle. The top half of the fig-

ure visualizes the closest members for different methods,

whereas the bottom half visualizes the farthest ones. When

no images get assigned to a cluster, the concept of clos-

est/farthest members doesn’t apply, and we depict this with

a red cross. Summarily, we observe that the closest mem-

bers from TGAN/EWC are much more similar to the corre-

sponding center than our method, whose even closest mem-

bers are visually distinct. This observation also helps ex-

plain the better performance of our method compared to

others in Table 2 (main paper).

Hand gestures experiment We find the property of

emerging correspondences within seemingly unrelated

source/target domains interesting, and hence for creativity

purposes, take a further step to explore the idea. We collect

images of arbitrary hand gestures being performed over a

plain surface, and train a source model from scratch using

that dataset. Next, we adapt it to various domains such as

landscapes, fire, maps. During inference, we observe differ-

ent aspects of the target domains a pair of hands can control

(e.g. structure of river/islands). Please see our teaser video,

which shows the correspondence results in this case, as well

as better explains the benefits of our method in previously

discussed scenarios (e.g. FFHQ → caricatures, Church →

Van Gogh houses).

Precision and recall metrics A limitation of FID [1] is

that it packs two aspects of the generated images, sample

quality and diversity, into one score. This makes it difficult

to disentangle and study the two properties separately. To

overcome this, density and coverage metrics were proposed

to evaluate the generative models [7]. In some feature space

(e.g. CNN embeddings), density measures how many real-

sample neighbourhood regions contain a fake sample. Cov-

erage, in the same space, measures the ratio of real samples

whose neighbourhood contains at least one fake sample. In

both the definitions, neighbourhood is defined as a spheri-

cal region around a real sample, with its radius given by the

distance from the next nearest real sample. A high score

for both the metrics is preferred. Density is unbounded,

whereas coverage is bounded by 1. We present evaluation

of the baselines fare using these metrics on FFHQ babies

dataset in Table 1. We observe that MineGAN achieves a

superior density score, i.e. quality of the generated image,

but suffers in the coverage aspect. This is again an indi-

cation of mode collapse to a small number of high quality

samples. Our method achieves a better balance between the

quality as well as diversity of the generated samples. Note

that this result is in alignment with the one presented in Ta-

Density Coverage

TGAN [9] 0.379 0.250

TGAN+ADA [2] 0.434 0.285

FreezeD [6] 0.418 0.217

MineGAN [8] 0.803 0.125

EWC [5] 0.301 0.325

Ours 0.690 0.467

Table 1: Density (↑) and Coverage (↑) scores for FFHQ ba-

bies.

ble 2 (main paper), which studies diversity among the gen-

erated samples in a different way.
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Figure 1: Real images used for translating a source model to different target domains. For landscape drawings and sketches,

we have shown the images used in 1-shot and 5-shot scenario, for the experiment presented in Fig. 9 of the main paper, and

Fig. 4 of this document.
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Figure 2: Translating the FFHQ source model to different target domains. The noise vector is kept same across the columns,

so that we can study the relation between the corresponding source and target image.
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Figure 3: Embedding unseen caricature images into models adapted from different source to the same target domain (carica-

ture). We observe that FFHQ → caricatures best captures the caricature properties, resulting in best reconstructions.
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Figure 4: Comparison of our method compared to EWC [5] and FreezeD [6] in 1-shot, 5-shot and 10-shot setting.
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Figure 5: Visualizing the clusters formed using the technique described in Sec. 4.1 of the main paper. The closest members

produced by TGAN/EWC are much more similar to the corresponding cluster center than our method, indicating that the

generations using the proposed method possess more diversity.


