
Supplementary Material:
Protecting Intellectual Property of Generative Adversarial Networks

from Ambiguity Attacks

Ding Sheng Ong1 Chee Seng Chan1∗ Kam Woh Ng2 Lixin Fan2 Qiang Yang3

1 University of Malaya 2 WeBank AI Lab 3 Hong Kong University of Science and Technology

Abstract

This supplementary material provides a more complete ex-
planation and experiment results that could not be included
in the main paper due to space constraints.

A. Overview of the Verification Process in
Model Protection

Generally, the verification process as shown in Fig. 1,
a suspicious online model will be first remotely queried
through API calls using a specific input keys (e.g. trigger set)
that were initially selected to trigger the watermark informa-
tion. As such, this is a black-box verification where a final
model prediction (e.g. for CNN model, the image classifica-
tion results) is obtained. This initial step is usually perform
to collect evidence from everywhere so that an owner can sue
a suspected party who used (i.e. infringed) his/her models
illegally. Once the owner has sufficient evidence, a second
verification process which is to extract watermark from the
suspected model and compare if the watermark is from the
owner. This process is a white-box verification, which means
the owner needs to have to access the model physically, and
usually this second step is go through law enforcement.

B. Extension to other generative models - Vari-
ational Autoencoder

As mentioned in the main paper, Section 3, line 246, our
proposed framework can be easily extended to other deep
generative models with trivial modification. Here we show
an example with Variational Autoencoder (VAE). In general,
VAE consists of 2 parts which are the probabilistic encoder,
qψ(z|x) and the generative model, pθ(x, z). The Encoder
approximate the posterior in the form of multivariate Gaus-
sian. The loss of a VAE is given below:

LVAE =
1

2

(
1 + log(σ2)− µ2 − σ2

)
+ log(pθ(x|z)) (1)

∗Corresponding author, e-mail: cs.chan@um.edu.my

Figure 1: An overview of general watermarking scheme
2-steps verification process. In Step 1, it can be noticed
that the protected model is trained to deliberately output
specific (incorrect) labels for a particular set of inputs T that
is known as the "trigger set". In Step 2, the watermark is
extracted from the model to proof ownership.

where z = µ + σ � ε and ε ∼ N (0, I). The input to the
generative model is the posterior, z which is either from
the probabilistic encoder or sampled from a multivariate
Gaussian distribution, N (z;µ,σI).

Since z is a vector of n dimension and the output is an
image (i.e. similar to DCGAN), we can use the exact same
transformation functions defined in Section 3.1.1 (DCGAN)
in the main paper, to create our trigger input using Eq. 1 and
the target using Eq. 2, respectively. Thus, the overall new
objective is shown as:

LVAEw
= LVAE + λLw (2)

B.1. Experimental results

For the VAE experiment, we set λ = 0.1 unlike other
GAN experiments in the main paper as the KLD loss and the
reconstruction loss are in very small scale. We perform the
experiment on the public dataset - CIFAR10, and the results
are shown in Table 1.



FID Qwm
VAE 229.6874 ± 3.80 -
VAEw 226.8893 ± 0.86 0.9973 ± 0.014
VAEws 231.1154 ± 0.63 0.9964 ± 0.014

Table 1: VAE results on CIFAR10.

z ∈ R128 N (0,1)
dense→Mg ×Mg × 512

4 × 4, stride=2 deconv. BN 256 ReLU
4 × 4, stride=2 deconv. BN 128 ReLU
4 × 4, stride=2 deconv. BN 64 ReLU

3 × 3, stride=2 conv. 3 Tanh

Table 2: Generator, Mg = 4 for CIFAR10 and Mg = 8 for
CUB-200.

RGB image x ∈ RM×M×3

3 × 3, stride=1 conv. 64 LeakyReLU
4 × 4, stride=2 conv. 64 LeakyReLU

3 × 3, stride=1 conv. 128 LeakyReLU
4 × 4, stride=2 conv. 128 LeakyReLU
3 × 3, stride=1 conv. 256 LeakyReLU
4 × 4, stride=2 conv. 256 LeakyReLU
3 × 3, stride=1 conv. 512 LeakyReLU

dense→ 1

Table 3: Discriminator, M = 32 for CIFAR10 and M = 64
for CUB-200.

C. Network Architecture
C.1. DCGAN

Table 2 - 3 show the standard CNN models for CIFAR-10
and CUB-200 used in our experiments on image generation
(i.e. DCGAN). The slopes of all LeakyReLU functions in
the networks are set to 0.1.

C.2. CycleGAN

Table 4 - 5 show the architecture for CycleGAN.

D. Network Complexity
Table 6 shows the computational complexity as a result

of the additional of our regularization terms on GANs model.
We observe that adding a new regularization term to embed
watermark and signature has no effect to the inference time.
As for training time, it is expected that it has an impact on
training time but the effect is very minor. We believe that it is
the computational cost at the inference stage that is required
to be minimized, since network inference is going to be

RGB Image 128× 128× 3
Conv.IN.ReLU 7× 7 stride=1 padding=3 128× 128× 64
Conv.IN.ReLU 3× 3 stride=2 padding=1 64× 64× 128
Conv.IN.ReLU 3× 3 stride=2 padding=1 32× 32× 256
ResidualBlock - - - 32× 32× 256
ResidualBlock - - - 32× 32× 256
ResidualBlock - - - 32× 32× 256
ResidualBlock - - - 32× 32× 256
ResidualBlock - - - 32× 32× 256
ResidualBlock - - - 32× 32× 256

Deconv.In.ReLU 3× 3 stride=2 padding=1 64× 64× 128
Deconv.In.ReLU 3× 3 stride=2 padding=1 128× 128× 64

Conv.Tanh 7× 7 stride=1 padding=3 128× 128× 3

Table 4: ResNet Generator architecture of CycleGAN. Re-
flection Padding was used and all normalization layers are
Instance Normalization according to the author’s work.

RGB Image 128× 128× 3
Conv.lReLU 4× 4 stride=2 padding=1 64× 64× 64

Conv.IN.lReLU 4× 4 stride=2 padding=1 32× 32× 128
Conv.IN.lReLU 4× 4 stride=2 padding=1 16× 16× 256
Conv.IN.lReLU 4× 4 stride=2 padding=1 8× 8× 512

Conv 4× 4 stride=2 padding=1 4× 4× 1

Table 5: 70×70 PatchGAN [1] was used as Discriminator of
CycleGAN. Leaky ReLU with slope of 0.2 was used except
the last layer.

Relative Time
DCGAN 1.00
DCGANw 1.25
DCGANws 1.26
SRGAN 1.00
SRGANw 1.19
SRGANws 1.23
CycleGAN 1.00
CycleGANw 1.15
CycleGANws 1.17

Table 6: The impact of the framework to the training time.
The values in the table are relative to the baseline model.

performed frequently by the end users. While extra costs
at the training stage, on the other hand, are not prohibitive
since they are performed by the network owners, with the
motivation to protect the model ownerships.

E. Extended Results

E.1. DCGAN

Fig. 2 is the extended results of the original task of DC-
GAN (i.e. image synthesis), as well as three different types
of watermark logos with CIFAR10 dataset when a trigger
input is provided, while Fig. 3 illustrates the results with



Figure 2: CIFAR10: First row is the sample watermark logo. Second row is the images generated by DCGANG(z) (i.e. original
task) and the last row shows the watermarked images if a trigger input is provided to the protected DCGAN model where each
of them is a different protected model trained on different response output set.

Figure 3: CUB-200: First row is the images generated by DCGAN G(z) (i.e. original task) and the second row shows the
watermarked images if a trigger input is provided to the protected DCGAN model where each of them is a different protected
model trained on different response output set.

CUB-200 dataset.

E.2. SRGAN

For SRGAN, the extended results are shown in Fig. 4.

E.3. CycleGAN

For CycleGAN, the extended results are shown in Fig. 5.

E.4. Robustness against removal attack

Fine-tuning. Fig. 6 shows the qualitative results for
Section 4.5, line 698 that our proposed method is robust
against fine-tuning attack as highlighted in Table 7 of the
main manuscript. We can clearly see that the watermark (on
the top left corner) remains intact after fine-tuning.

E.5. Resilience against ambiguity attack

This section shows the full results of applying sign loss
(Eq. 11 in the main paper) to embed a signature into BN-
scale, γBN . The implementation details is given in Section
3.2 of the main paper. Here in the supplementary, we show
the example of how the unique key "EXAMPLE" is embed-
ded into our DCGAN’s batch normalization weight. Table 7
shows how to decode the trained scale, γBN to retrieve the
signature embedded. Also, please note that even that there
are 2 "E", their γBN are different from each other.

Fig. 7 - 8 are the complete results to complement Figure
9 - 10 in Section 4.6 of the main manuscript. It can be clearly

visualize from Fig. 8 that the quality of the generated SR-
images is very poor where obvious artefact can be observed
even the signature signs are modified at only 10%. With
this, we can deduce that the scale signs (Eq. 11 in the main
manuscript) enforced in this way remain rather persistent
against ambiguity attacks.

E.6. Ablation Study - Coefficient λ.

In this section, qualitatively, we illustrate in Fig. 9 the
effects of different λ settings (i.e. from 0.1 → 10) on the
original GAN model performance against the quality of the
generated watermark (this is similar to Table 10 in the main
manuscript) with CIFAR10 dataset. From visual inspection
on Fig. 9, it is hard to deduce that which λ is an ideal
choice. In this paper, based on the quantitative results (FID
vs. SSIM) in Table 10 in the main manuscript, we set λ =
1.0.

E.7. Ablation Study - n vs. c.

In this section, qualitatively, we illustrate in Fig. 10 - 11
different n and c settings to understand the tradeoffs between
the original GAN model performance against the quality of
the generated watermark (this is similar to Table 11 in the
main manuscript) with CIFAR10 dataset. From here, it can
be noticed that it is, however, very hard to distinguish from
a naked eye point of view which setting is having the best
tradeoffs with the exception that it is very clear that setting
c = 0 is not ideal. This is because from Fig. 11a-c, we



Figure 4: The first column shows the trigger input xω to SRGAN. Next three columns are the response output G(xω) when
the trigger input is provided to the protected generators .

Figure 5: Image pairs from CycleGAN models trained on Cityscapes datasets, respectively

can notice that the generated images are all almost black
(i.e. for n = 5, 10, 15). This phenomenon happens because
the training input of DCGAN has a normal distribution of
µ = 0, therefore it is conflicting with the trigger input which

is also set as c = 0.
As a summary, trigger input set must have a very different

distribution from the training data. In this paper, based on
the quantitative results (FID vs. SSIM) reported in Table 7



E X A M P L E
γ +/- bit γ +/- bit γ +/- bit γ +/- bit γ +/- bit γ +/- bit γ +/- bit

-0.50 - 0 -0.22 - 0 -0.49 - 0 -0.24 - 0 -0.17 - 0 -0.44 - 0 -0.23 - 0
0.46 + 1 0.40 + 1 0.39 + 1 0.39 + 1 0.56 + 1 0.52 + 1 0.52 + 1
-0.42 - 0 -0.26 - 0 -0.44 - 0 -0.19 - 0 -0.17 - 0 -0.48 - 0 -0.28 - 0
-0.64 - 0 0.54 + 1 -0.17 - 0 -0.36 - 0 0.65 + 1 -0.62 - 0 -0.43 - 0
-0.25 - 0 0.43 + 1 -0.15 - 0 0.58 + 1 -0.53 - 0 0.37 + 1 -0.51 - 0
0.25 + 1 -0.14 - 0 -0.52 - 0 0.24 + 1 -0.56 - 0 0.49 + 1 0.22 + 1
-0.61 - 0 -0.45 - 0 -0.44 - 0 -0.18 - 0 -0.20 - 0 -0.47 - 0 -0.26 - 0
0.57 + 1 -0.34 - 0 0.35 + 1 0.55 + 1 -0.40 - 0 -0.55 - 0 0.32 + 1

Table 7: Example of the trained batch normalization weight γ of DCGANws using the word "EXAMPLE" as an unique key.
We use 8-bits to represent each character.

Generator Loss Input Black-Box White-Box Overall LossTrigger Target Loss Norm Type Loss

DCGAN LDC [Eq. 5] z ∼ N (0, 1) f(z) [Eq. 1] g(G(z)) [Eq. 2] Lw [Eq. 3] BatchNorm Ls [Eq. 11] LDC + λLw + Ls

SRGAN LSR [Eq. 8] x ∼ pdata(x) h(x) [Eq. 6] g(G(x)) [Eq. 2] Lw [Eq. 3] BatchNorm Ls [Eq. 11] LSR + λLw + Ls

CycleGAN LC [Eq. 10] x ∼ pdata(x) h(x) [Eq. 6] g(G(x)) [Eq. 2] Lw [Eq. 3] InstanceNorm Ls [Eq. 11] LC + λLw + Ls

Table 8: Summary of our proposed implementation to protect the IPR of GANs models. Note that, the equations herein are
reflected in the main paper.

of the main manuscript, we conclude that setting n = 5 and
c = −10 is the most ideal.

F. Summary
In this paper, we represent an outline of a complete and

robust ownership verification scheme for GANs covering
the black-box and white-box protection schemes in Table 8.
The importance of this work, in our view, can be highlighted
by numerous disputes over IP infringements between giant
and/or startup companies, which are now heavily investing
substantial resources on developing new DNN models. It
is our wish that the ownership verification for GANs, to-
gether with existing efforts to protect CNN models provide
technical solutions in discouraging plagiarism and, hence,
reducing wasteful lawsuit cases.

References
[1] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-

image translation with conditional adversarial networks,”
in CVPR, 2017, pp. 1125–1134.

(a) DCGAN

(b) SRGAN

(c) CycleGAN

Figure 6: Fine-tuning: For every pair, from left to right -
G(xω) before and after fine-tuning. It shows that our pro-
posed method is robust against removal attack (i.e. fine-
tuning) as it is clearly noticed that the embedded watermark
(top left corner) is still remained intact for DCGAN, SRGAN
and CycleGAN.



Figure 7: Ambiguity attack - DCGAN: It can be seen that the quality of the image drop significantly when the sign of the γBN

of DCGANws is modified. Left to right: The amount (from 0% to 100%) of the sign is being modified.

(a) Comic

(b) Baboon

(c) Lenna

Figure 8: Ambiguity attack - SRGAN: It can be seen that the quality of the images drop significantly when the sign of
SRGANws is being modified. Left to right: The amount (from 10% to 100%) of the sign is being modified.

(a) λ = 0.1 (b) λ = 0.5 (c) λ = 1.0

(d) λ = 5.0 (e) λ = 10.0

Figure 9: Effects of different λ to original model performance (top) and quality of generated watermark (bottom).



(a) n = 5 ; c = −10 (b) n = 10 ; c = −10 (c) n = 15 ; c = −10

(d) n = 5 ; c = −5 (e) n = 10 ; c = −5 (f) n = 15 ; c = −5

Figure 10: Effects of different n and c to original model performance (top) and quality of generated watermark (bottom) (cont.
in Fig. 11).

(a) n = 5 ; c = 0 (b) n = 10 ; c = 0 (c) n = 15 ; c = 0

(d) n = 5 ; c = 5 (e) n = 10 ; c = 5 (f) n = 15 ; c = 5

(g) n = 5 ; c = 10 (h) n = 10 ; c = 10 (i) n = 15 ; c = 10

Figure 11: (cont.) Effects of different n and c to original model performance (top) and quality of generated watermark
(bottom).


