
Neural Camera Simulators
Supplementary Material

In this supplementary material, we provide additional
analysis, implementation details, and experimental results.
First, we analyze the effectiveness of each module design
and show the quantitative results on raw image simulation.
Then, we provide more implementation details of different
modules, baselines, and applications.

1. Model Analysis

1.1. Regression model in the exposure module

We analyze the design of the linear regression model
in the exposure module. We adopt different b values for
each channel in the RGBG Bayer pattern. When training
this module, we exclude image pairs with aperture value
changes. The final optimized w is 1.0038 and the optimize
b is [−0.0003,−0.0004,−0.0004,−0.0005]. As we expect,
w is close to 1 and b close to 0. We quantitatively ana-
lyze the exposure module by calculating the L2 loss on the
test dataset. The mean squared error for simply multiplying
the multiplier is 0.7729, and that for applying the exposure
module is 0.0033.

1.2. Exposure stops

Unlike many other parameters, the controllable exposure
setting in a camera is not continuous but discrete with cer-
tain stops. One stop means doubling or halving the amount
of light arriving at the sensor. Given a specific scene, the
number of combinations of camera parameters at the suit-
able exposure stop is tremendous (e.g., ISO 100, Exposure
time 1s, Aperture 1/5.6 and ISO 200, Exposure time 1/4
s, Aperture 1/4.0 are at the same stop). These combina-
tions enable the possibility of capturing photos at the same
exposure stops with different artistic styles. Since mod-
ern cameras (including all cameras used for data collecting
in this paper) usually adopt one-third fractional f-number
stop. Specifically, the difference between each step is 1

3Ev,
where 1Ev corresponds to a standard power-of-two expo-
sure step, and one f-stop refers to a factor of

√
2 change

in f-number. Thus the f-number steps in this series can be√
2
s/3

where s ∈ N. We can calculate the corresponding
step index of input and output settings to get the more accu-

rate multiplier:

s1 = Round(6 log2(n1)), (1)
s2 = Round(6 log2(n2)), (2)

αn = 2(s1−s2)/3. (3)

1.3. Attention layers in the aperture module

We trained another baseline U-Net [10] without the at-
tention layer to show the effectiveness of the attention mod-
ule. The input and output aperture is concatenated as addi-
tional channels to the input raw data. As in Fig. 1, without
the attention module, the model can not learn how to en-
hance the subtle blur region.

1.4. Order of modules

In this paper, the order of the three modules is expo-
sure correction, noise adjustment, and aperture enhance-
ment. The first step must be the exposure correction since
our experiments show that without this step, the network
will focus on learning the change in illuminance while not
learning the image details. However, the order of the other
two modules can be changed to aperture enhancement first
and then noise adjustment. We report the new metrics in
Tab. 1.

1.5. Image quality evaluation

We provide quantitative results of different simulation
direction in Tab. 2. In each direction, only one camera pa-
rameter is changed. PSNR/SSIM is not a suitable metric
to represent the quality of simulation direction ISO↑, given
the case that the simulated image and the ground-truth im-
age are both noisy images with different random noise. Al-
though the metric of ISO↑ is low, the perceptual quality of
ISO↑ is relatively high.

1.6. Deblur

We try to synthesize images from large apertures to small
apertures. The result is shown in Fig. 2. Our model can not
synthesize the deblurring image correctly.
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Figure 1. Results of U-Net without and with the attention layer. Images generated without the attention layer cannot magnify the blur
region correctly. Our method achieves more similar results to the ground truth image. Best viewed with zoom-in.

EXP AP FULL

PSNR 28.61 28.65 28.90
SSIM 0.861 0.868 0.879

Table 1. PSNR and SSIM of different stages of the model with the order of EXP (exposure module), AP (aperture module), and FULL (full
model).

Input Ours GT

Figure 2. Results from large aperture to small aperture.

1.7. HDR baseline

We tried another baseline for HDR experiments: simply
multiplying the raw pixels to simulate images with differ-
ent exposures for HDR generation. The result is shown in
Fig. 3, which demonstrates that simple multiplication will
introduce more noise.

Input Multiplication Ours

Figure 3. HDR baseline. Zoom in for details.
1.8. NLF noise model

In this section, we discuss the reason that we choose
the NLF noise model. The most manageable and accessi-
ble noise model is the additive white Gaussian noise model,
which adopts a homoscedastic Gaussian assumption. The
model assumes that the noise is independent of the im-
age value. The mean of the Gaussian distribution is 0,
and the value of the standard deviation decides the noise
level. Despite the extensive usage of the additive white
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ISO↑ Exposure time↑ ISO↓ Exposure Time↓ Aperture↑
PSNR 35.47 36.13 37.15 37.64 34.20
SSIM 0.908 0.921 0.939 0.930 0.875

Table 2. PSNR and SSIM of different simulation direction. ↑ means from small to large, and ↓ means from large to small.

Gaussian noise model, it contradicts with the physical imag-
ing principle that the photon noise introduced by photon-
counting is dependent on the number of photons. The real
noise is mainly composed of two primary sources: signal-
independent noise because of the reading and writing of the
electronic circuits and signal-dependent noise due to the
photon counting. To form a more accurate estimation of
the image noise, researchers assume the noise distribution
as a mixture of Poisson distribution (for signal-dependent
source) and Gaussian distribution (for signal-independent
source) [3, 4, 8]. An alternative way [7, 9, 6] to describe
this mixture distribution is to regard the Poisson distribu-
tion as the part of Gaussian distribution with variance de-
pending on the signal. The heteroscedastic Gaussian model
(or noise-level function) has shown the capability to ac-
curately describe the signal-dependent noise. Thus most
modern cameras provide a set of calibrated NLF noise pa-
rameters to improve the denoising results. Most recent
works consider the other minor sources in real noise, such
as fixed-pattern noise, defective pixel noise. Researchers
adopt a data-driven way utilizing generative adversarial net-
works [1] or flow-based models [1] training on the large
dataset with clean and noisy image pairs. However, these
methods require extensive clean-noisy pairs to adapt to the
new sensor. We use the NLF model, considering its high
accuracy and easy accessibility.

1.9. Vignetting

Currently, our dataset has visually negligible vignetting
effects. It would be interesting to investigate and simulate
how vignetting changes with different camera settings when
vignetting is visible.

2. Implementation
2.1. Baselines

Directly using the original value of camera settings as
additional input leads to model divergence of all baseline
models PC and DL. To fix this issue, we use the αg , αn,
and αt calculated in the exposure module as the prior guid-
ance. We adopt the same U-Net structure as [2] in the PC
baseline. In DL baselines, we empirically find that associ-
ating the weights of the instance normalization layer other
than convolutional layers with the camera parameters leads
to better convergence results. We have also tried adding
noise level maps to the baselines, and the baselines output

Number of Matches

Difficulty Easy Medium Hard

Original 1307 849 514
Augmented 1638 1235 835

Table 3. Quantitative results of feature match

similar results when noise level maps are provided.

2.2. Auto-exposure mode

The auto-exposure selection algorithm is trained on sim-
ulated data rather than captured data because it is time-
consuming to manually capture enough real data to train
the algorithm well. Our simulator offers an opportunity to
avoid tedious data collection process.

In the auto-exposure toy model, we focus only on the
auto-exposure mode under a normal lighting condition (i.e.,
not including dark and extremely bright environment). Thus
the selected 64 camera settings state have low ISO (from
100 to 800) and relatively short exposure time (from 0.005s
to 0.5s). These settings usually cover the relatively good
camera settings for capturing photos with correct exposure.
We tested two image scoring standards. The first one is the
NIMA model [11], which is trained on a dataset focusing
on the aesthetic score of an image. However, in our case,
it tends to give the under-exposure image a higher score
because their training data contains a lot of high aesthetic
score low-light photographs. The other one is the defect
detection model [12], which is trained on a dataset con-
centrating on the detecting image defect, including expo-
sure, noise, and saturation. We found the pre-trained model
quite accurate to detect over-exposure and under-exposure.
Hence we adopt this defection score in our model. We select
200 images from 50 scenes. For each image, we generate
64 simulated images and get the predicted defection score
as ground truth for learning.

We directly adopted the ResNet50 structure for training
the score prediction. The last layer is replaced with a lin-
ear layer that outputs 64 scores. We empirically find that
utilizing KL-divergence as a loss function yields the best
prediction result.
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2.3. Data augmentation

2.3.1 Data generation

We discuss the data generation for training the d2-net in
this section. Initially, since our dataset is captured on static
scenes, the matching points of each pair from the same se-
quence are the points with the same coordinates. However,
to increase the robustness of the training process and pre-
vent overfitting, we augment each training pair with a ran-
dom perspective transform. The transformation matrix is
decided by solving the equation from the original coordi-
nates of four corners to the new coordinates. Each corner
is shifted by a random number in the range [−150, 150] in
each axis. To train with the augmented data, we randomly
synthesize 100 new images with different settings using the
data from the original scene. The learning rate is 1e − 3,
and the model is trained for 30 epochs.

3. More results
3.1. Simulation

More results of the simulation and error maps for each
module are shown in Fig. 4.

3.2. HDR

More results of HDR are demonstrated in Fig. 5.

3.3. Feature matching

More qualitative results are demonstrated in Fig. 6. For
the quantitative comparison, we randomly sampled 50 pairs
from the testing sequences for each category: easy, medium,
and hard. Easy case denotes that the exposure stop differ-
ence between two images in the pair is 1 or below 1 stop,
the medium case is 1 to 3 stops, and the hard case is above 3
stops. The quantitative results are shown in Tab. 3. We ob-
serve the improvement of the augmented method, especially
for difficult cases.
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Figure 4. Images generated by each module of our simulator. Best viewed with zoom-in.
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Input HDR Image

Simulated Image 1 Simulated Image 2 Simulated Image 3 Simulated Image 4

Simulated Image 5 Simulated Image 6 Simulated Image 7 Simulated Image 8

Simulated Image 9 Simulated Image 10 Simulated Image 11 Simulated Image 12

Simulated Image 13 Simulated Image 14 Simulated Image 15 Simulated Image 16
Figure 5. Results of generated HDR images by algorithm [5].
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Original Augmented

Figure 6. Visual results of local feature matching.
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Noise measurements in charge-coupled devices. IEEE
Transactions on Electron Devices, 22(5):209–218, 1975. 3

[10] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention. Springer, 2015.
1

[11] Hossein Talebi and Peyman Milanfar. Nima: Neural im-
age assessment. IEEE Transactions on Image Processing,
27(8):3998–4011, 2018. 3

[12] Ning Yu, Xiaohui Shen, Zhe Lin, Radomir Mech, and Con-
nelly Barnes. Learning to detect multiple photographic de-
fects. In 2018 IEEE Winter Conference on Applications of
Computer Vision. IEEE, 2018. 3

11


