
Supplementary Section

In this section, we include more details which could not be
included in the main paper due to space constraints.

• Architecture Details and Algorithm: discussion,
analysis on the architecture, and pseudo code of the
STIC methodology are provided in Sec 7.

• STIC vs. SOTA Image Synthesis using Discrimi-
native Classifier Methods: we provide more analysis
and justification on why and how the STIC learns class
boundaries better than the baseline methods in Sec 8.

• More Qualitative Results: We provide more qualita-
tive results in Sec 9.

7. Additional Architecture Details and Algo-
rithm

In addition to the methodology described in Sec 3, we
present the overall methodology in the form of an algorithm
in 1.

Further Discussion on STIC: In continuation to the dis-
cussion in Sec 4, we now provide more details of the ex-
periment for STIC. The initial learning rate is set to 0.0001
while we have a learning rate decay of 0.3 after every 10k
epochs. Varying ε1 between {0.9 − 1.0} and ε2 between
{0.9 − 1.0} to the range produces good quality images
with high FID (see Fig 8) potentially because the learning
from stochastic gradient langevin dynamics at passes τ ∈
{1, 2, · · · , T} and learning from Gram matrix similarity of
real images to the synthetic images support each other’s
learning. However, varying ε3 between {0.01 − 0.02} (i.e.
lower range) helps to search the manifold and controls the
diversity of synthesis. But, varying ε3 between {0.1− 0.8}
(i.e. higher range) does not provide a good update signal.

We choose WideResNet-28-10 due to various reasons,
such as (1) we can directly drop the batch normalization
without compromising the accuracy of the classifier; and
(2) the architecture has less number of parameters, easy to
train and widely used that has all the facilities of a standard
ResNet architecture.

Further Discussion on Attentive stic: Read R(·) and
LSTM network of STIC are followed from [8]. The
LSTM network provides a 100 dimensional feature vector
to the discriminative classifier. The decoder network is the
DCGAN, i.e. f100-conv1(8x8x1024)-conv2(64x64x512)-
conv3(212x212x128)-conv4(512x512x3). The discrimna-
tive classifier has the same hyperparamters as STIC.

Figure 8: ε1 vs. ε2 vs. FID: we observe the highest FID
score (blue axis) if the scaling factors ε1 (black axis) and ε2
(red axis) are set to the range {0.9− 1.0} while keeping the
range of other scaling factor in the range {0.01− 0.02}.

8. STIC vs. SOTA Image Synthesis using Dis-
criminative Classifier Methods:

Our broad idea of using a discriminative classifier to syn-
thesize class conditioned images may find similarity with
earlier efforts [15, 20, 7], however, in many aspects, they
are different from our STIC methodology:

• STIC vs. INN: The INN methodology [15] has
c ∈ {1, 2, · · · , C} number of distinct CNN classifiers
trained with ERM [31] and cascaded in a sequential
manner. For any classifier, let’s assume the cth clas-
sifier, the parameters are Wc = {w0

c ,w11
c , · · · ,w1K

c }.
The w1

c denotes the weights of the top K separate lay-
ers forK classes, while w0

c carries all internal features.
The negative samples are sampled for each class. Such
negative samples along with the real samples are then
utilized by the c+1th classifier to segregate real sam-
ples to negative samples. On the other hand, the STIC
classifier serves dual objectives, viz. the interpolated
samples from one class to another must be smooth and
the classifier must learn tighter class boundaries so as
to generate photo-realistic samples. Thus, STIC is dif-
ferent from INN in several ways, such as: (1) STIC is
trained with VRM [36] with virtual image-label pairs
along with real image-label pairs that provide a good
learning of smooth class boundaries and tighter class
boundary across passes; (2) the loss function and the
training methodology of STIC is different from INN,
i.e. INN uses a separate branch for each classes, but,
STIC instead uses a single architecture wide ResNet
(ref. Sec 4) and trains the method; (3) STIC optimizes
less number of parameters (single architecture) than
INN (classifier with multiple branches), and, we note
that, the convergence time and image quality of STIC
is far better than INN due to training the classifier with



Algorithm 1: Training STIC
Input: Number of passes τ ∈ {1, 2, · · · , T}, Minibatch size: m
Output: Trained STIC model
for a pass τ do

iteration = 0
for iteration ≤ 5k do

Draw a batch of K synthesized image-label pairs from previous classifier pθτ−1 using GRMALA in Eq 3;
Draw a batch of K synthesized mixup image-label pairs from previous classifier pθτ−1 using GRMALA in

Eq 3;
Draw a batch of N image-label pairs from dataset pdata;
Draw a batch of N mixup virtual image-label pairs similar to [36];
Update weight θτ of STIC classifier using mini-batch stochastic gradient descent with gradients as computed
below:

−
i=1,··· ,N∑

(xi,yi)∼pdata

log pθτ+1(yi = yc|xi)−
k=1,··· ,K∑

(xmixupk ,ymixupk )∼pmixup

log pθτ+1(yk = ymixup|xmixupk )

−
i=1,··· ,N∑

(xi,yi)∼pθτ

log pθτ+1(yi = −1|xi)−
k=1,··· ,K∑

(xmixupk ,ymixupk )∼pθτ

log pθτ+1(yk = −1|xmixupk )

end
end

VRM; (4) utilization of synthetic samples as fake sam-
ple is different from INN; and most importantly (5)
our sampling technique, i.e. GRMALA (ref Sec 3), is
novel and different from the MCMC-based sampling
of INN.

• JEM vs STIC: The JEM [7] methodology is devel-
oped based on an energy based estimation of p(x)
and p(x, y). We note that such a method is different
from ours, as: (1) as described above, the STIC uses
VRM based training and GRMALA. (2) The recurrent
class boundary re-estimation way of training is differ-
ent from the JEM methodology.

We ask ourselves the question, how does VRM help the
STIC method? From the understanding of VC theory [31],
the classification error of a classifier f̂ can be decomposed
as:

R(f̂)−R(f) ≤ O
( |F̂ |C
nα

)
+ ε (6)

here, f ∈ F is the true classifier function we wish to ap-
proximate using the function f̂ ∈ F̂ . The | · |C is the class
capacity measure, error is the R, number of data points are
shown as n and α is the learning rate. We note that, the ε is
the approximation error of F̂ with respect to the functionF .
To this end, a loss function l(·) penalizes the difference be-
tween the predictions f̂(x) and the ground truth y sampled
from pdata(x, y). The average of the loss function l(·) is

averaged over training data samples and the empirical risk
is minimized as follows:

R(f̂) =

i=1,··· ,n∑
xi,yi∈pdata(x,y)

l(f̂(xi), yi) (7)

A classifier function f̂ trained with STIC takes the follow-
ing form:

R(f̂) =

i=1,··· ,N∑
(xi,yi)∼pdata

l(f̂(xi), yi)

+

k=1,··· ,K∑
(xmixupk ,ymixupk )∼pmixup

l(f̂(xmixupk ), ymixupk )

+

i=1,··· ,N∑
(xi,yi)∼pθτ

l(f̂(xi),−1)

+

k=1,··· ,K∑
(xmixupk ,ymixupk )∼pθτ

l(f̂(xmixupk ),−1)

(8)

Similar to the argument presented in [4], if the virtual
image-labels are a poor approximation of class vicinity then
STIC trained with VRM performs at least as good as a clas-
sifier trained with ERM. We note that the virtual image-
labels using mixup of softmax [36] provides a good ap-
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Figure 9: Visualization of CIFAR 10 dataset Class Boundaries: We visualize seven class (i.e. airplane, automobile, bird,
cat, deer, dog, frog classes of CIFAR 10 are shown to reduce the clutter) boundaries of (a) INN (b) JEM and (c) STIC on the
CIFAR 10 dataset. We observe that the class boundary is very compact in STIC. The yellow stars are points we sample and
synthesize images.

proximation of class vicinity. In addition to that, the re-
current self-estimation with VRM is a better approximation
of class vicinity w.r.t the method proposed in [36]. We show
the class boundary visualization of INN, JEM and STIC in
Fig 9 and we note that the STIC class boundary is compact
- supporting our claim. We also note that, the use of GR-
MALA based synthesis also provides good learning signal
to estimate class boundaries.

9. More Synthesized Images
In addition to our qualitative results shown in Fig 1, in

this section we show more qualitative images of LSUN, Ci-
far 10 and ImageNet datasets in Figs 11-15 (please see next
pages).

10. Synthesizing using STIC
Following the training process described in Sec 3 and

Algorithm 1, STIC synthesize images as follows: starting
with an initial x0 typically sampled from a Gaussian distri-
bution N (0, I), the GRMALA uses the transition operator,
viz. xt+1 = xt+ε1∇ log p(xt)+

∑
(GL(xt)−AL(xt))2+

N (0, ε22), synthesize novel image samples from the classi-
fier at pass τ = T , see Fig 10 (b). We show the training
process again in Fig 10 (a).



Figure 10: Image Synthesis using STIC at Image Generation Phase: (a) training phase of STIC, (b) image synthesis from
STIC at time t.



Figure 11: More Qualitative Results on the LSUN dataset: We show qualitative results on the LSUN conference class.



Figure 12: More Qualitative Results on LSUN dataset: We show qualitative results on LSUN dinning hall class.



Figure 13: More Qualitative Results on LSUN dataset: We show qualitative results on LSUN classroom class.



Figure 14: More Qualitative Results on CIFAR 10 Dataset: We show qualitative results on CIFAR 10 images (mixed
classes).



Figure 15: More Qualitative Results on ImageNet Dataset: We show qualitative results on ImageNet images.



Figure 16: Class Interpolation Results on ImageNet Dataset: We show two more interpolation results on ImageNet images.


