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1. High-order Self Correlation
To apply the inherent structure-preserving ability of the

network for accurate WSOL, we propose to use high-order
self-correlation (HSC) to capture the structural information
of objects. The hth order similarity between fi and fi are
formulated as:

Sh(fi, fj) =
1

(HW )h−1

∑
k0

· · ·
∑
kh−2

S(fi, fk0) · · ·S(fkh−2 , fj),

(1)
where k0, kh−2 ∈ Ω, h ∈ {2, 3, 4 · · · } and i 6= k0 6= kh−2.
h denotes the order, and Ω denotes the set of all features.
The Sh(fi, fj) is then normalized to [0, 1] following:

Ŝh(fi, fj) =
Sh(fi, fj)−mink∈ΩS

h(fi, fk)

maxk∈ΩSh(fi, fk)−mink∈ΩSh(fi, fk)
,

(2)
Then, we define HSC as:

SCh(f) =
[
Ŝh(fi, fj)|i,j

]
. (3)

Compared with first-order self-correlation, HSC can preserve
the details of the object by considering long-range context.
However, the HSC may introduce additional noise.

2. Quantitative Results
Bounding Box Localization We here show more results
on bounding boxes localization. Table 1 and Table 2 are
the localization results on ILSVRC validation and CUB-
200-2011 testing sets, respectively. On ILSVRC validation
set, we achieve the state-of-the-art with VGG16, and obtain
comparable results with current state-of-the-art method
I2C [14] with Inception V3. Compared with baseline
methods, the proposed SPA is much simpler and almost
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parameter-free without introducing additional convolutional
layers. On CUB-200-2011 testing set, the proposed SPA
surpassing all the baseline methods.

Error Analysis. To further reveal the effect of our method,
we define five metrics to perform bad case analysis on
the proposed SPA approach. Specifically, we divide the
localization error into five cases: classification error (Cls),
multi-instance error (M-Ins), localization part error (Part),
localization more error (More), and others (OT). For bet-
ter description, we also define IoG and IoP. Similar to
IoU(intersection over Union), IoG means that intersection
over ground truth box and IoP means that intersection over
predict bounding box.

• Cls includes the predictions that are wrongly classified.

• M-Ins indicates that the prediction intersects with at
least two ground truth boxes, and IoG > 0.3.

• Part indicates that the predicted bounding box only
cover the parts of object, and IoB > 0.5.

• More indicates that the predicted bounding box is larger
than the ground truth bounding box by a large margin,
and IoG > 0.7.

• OT indicates other predictions that do not fall under
above mentioned cases.

The five cases defined above are mutually exclusive. We
show the details of the definition of five metrics in Algo-
rithm 1 Each metric calculates the percentage of images
belonging to corresponding error in the validation/testing
set. Table 3 lists localization error statistics. Localization
error Cls caused by wrong classification dominates the error.
But the classification is not the main concern for WSOL.
We mainly focus on M-Ins, Part, and More metrics. For
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Methods Backbone Loc Err. Cls Err.
Top-1 Top-5 Gt-Known Top-1 Top-5

Backprop [5] VGG16 [6] 61.12 51.46 - - -
CAM [15] VGG16 [6] 57.20 45.14 - 31.2 11.4
CutMix [11] VGG16 [6] 56.55 - - - -
ADL [1] VGG16 [6] 55.08 - - - -
ACoL [12] VGG16 [6] 54.17 40.57 37.04 32.5 12.0
I2C [14] VGG16 [6] 52.59 41.49 36.10 30.6 10.7
MEIL [3] VGG16 [6] 53.19 - - 29.73 -
Ours VGG16 [6] 50.44 38.68 34.95 29.49 9.95
CAM [15] InceptionV3 [8] 53.71 41.81 37.32 26.7 8.2
SPG [13] InceptionV3 [8] 51.40 40.00 35.31 30.3 9.9
ADL [1] InceptionV3 [8] 51.29 - - 27.2 -
ACoL [12] GoogLeNet [7] 53.28 42.58 - 29.0 11.8
DANet [10] GoogLeNet [7] 52.47 41.72 - 27.5 8.6
MEIL [3] InceptionV3 [8] 50.52 - - 26.69 -
I2C [14] InceptionV3 [8] 46.89 35.87 31.50 26.7 8.4
GC-Net [2] InceptionV3 [8] 50.94 41.91 - 22.6 6.4
Ours InceptionV3 [8] 47.29 35.73 31.67 26.74 8.19

Table 1. Comparison between our method and the state-of-the-art on the ILSVRC [4] validation set. Our method outperforms all other
methods by a large margin for object localization. Here ‘ClsErr’, ‘LocErr’ and ’Gt-Known’ are short for classification error, location error
and Gt-known location error, respectively.

Methods Backbone Loc Err. Cls Err.
Top-1 Top-5 Gt-Known Top-1 Top-5

CAM [15] GoogLeNet [7] 58.94 49.34 44.9 26.2 8.5
SPG [13] GoogLeNet [7] 53.36 42.8 - - -
DANet [10] InceptionV3 [8] 50.55 39.54 33.0 28.8 9.4
ADL [1] InceptionV3 [8] 46.96 - - 25.45 -
Ours InceptionV3 [8] 46.41 33.50 27.86 26.49 8.61
CAM [15] VGG16 [6] 55.85 47.84 44.0 23.4 7.5
ADL [1] VGG16 [6] 47.64 - - 34.73 -
ACoL [12] VGG16 [6] 54.08 43.49 45.9 28.1 -
DANet [10] VGG16 [6] 47.48 38.04 32.3 24.6 7.7
SPG [13] VGG16 [6] 51.07 42.15 41.1 24.5 7.9
I2C [14] VGG16 [6] 44.01 31.6 - - -
MEIL [3] VGG16 [6] 42.54 - - 25.23 -
Ours VGG16 [6] 39.73 27.5 22.71 23.89 7.85

Table 2. Comparison between our method and the state-of-the-art on the CUB-200-2011 test set. Here ‘ClsErr’, ‘LocErr’ and ’Gt-Known’
are short for classification error, location error and Gt-known location error, respectively.

Methods ILSVRC(%) CUB-2011-200(%)
Cls M-Ins Part More OT Cls M-Ins Part More OT

VGG16 29.47 10.65 3.85 9.58 0.2 23.28 - 21.91 10.53 1.76
Ours 29.49 9.97 2.83 7.66 0.5 23.89 - 9.25 6.33 0.26
InceptionV3 26.73 10.36 3.22 9.49 0.20 26.39 - 23.09 5.52 0.64
Ours 26.74 9.48 2.89 7.80 0.37 26.49 - 12.81 6.83 0.03

Table 3. Localization error statistics.

ILSVRC, the proposed SPA effectively reduces the three
kinds of localization error. Although there is no explicit
solution for multi-instance problem, our method reduces

the M-Ins error. From Table 3, it shows that the M-Ins and
More are the most important problems to solve. It it worth to
explore CAM-based methods for weakly supervised instance
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Algorithm 1 Error Analysis Algorithm.
Input: Predicted bounding boxBp ∈ R1×4; Predicted label

Cp; ground truth boxes list Bg ∈ RN×4; ground truth
label Cg; Maximum IoU ˆIoU between the Bp and Bg;

Output: Cls, M-Ins, Part, More, OT;
1: Set Cls = M-Ins = Part = More = OT = 0
2: if Cp 6= Cb[0] then
3: Cls =1
4: return Cls, M-Ins, Part, More, OT
5: end if
6: if ˆIoU > 0.5 then
7: return Cls, M-Ins, Part, More, OT
8: end if
9: Calculate IoG ∈ R1×N between the Bp and Bg

10: if Count(IoG > 0.3) > 1 then
11: M-Ins = 1
12: return Cls, M-Ins, Part, More, OT
13: end if
14: Calculate the maximum ˆIoG and ˆIoP
15: if ˆIoP > 0.5 then
16: Part = 1
17: return Cls, M-Ins, Part, More, OT
18: end if
19: if ˆIoG > 0.7 then
20: More = 1
21: return Cls, M-Ins, Part, More, OT
22: end if
23: OT = 1
24: return Cls, M-Ins, Part, More, OT

localization in future work. For CUB-200-2011, there is
only one instance in each image. Our method effectively
reduces Part and More errors on VGG16, which indicates
that our localization maps are much accurate. On Inception
V3, the proposed SPA significantly reduce Part by 10.2%.

3. More Examples

Self-correlation Maps. We here show more visualization
examples for self-correlation maps in Fig. 1, Fig. 2, Fig. 3,
Fig. 4. In each figure, we show five self-correlation
maps for corresponding points marked by green cross in
original images. The middle row shows the first-order self-
correlation maps and the bottom row shows the second-order
self-correlation maps.

localization Results. We also show more visualization
examples of localization maps in Fig. 5, Fig. 6, Fig. 7. In
each figure, the original images with ground truth bounding
boxes (in red) are shown in top row. The localization maps
with CAM and the proposed SPA are shown in middle and
bottom row, respectively.

Mbg Mobj

τ (bg) IoU IoG IoP τ + σ(fg) IoU IoG IoP
0.1 0.42 0.44 0.92 0.0 0.30 1.00 0.30
0.2 0.54 0.59 0.89 0.1 0.33 1.00 0.33
0.3 0.60 0.69 0.86 0.2 0.36 0.99 0.35
0.4 0.65 0.77 0.83 0.3 0.37 0.98 0.37
0.5 0.67 0.83 0.80 0.4 0.38 0.97 0.38
0.6 0.69 0.87 0.77 0.5 0.38 0.95 0.40
0.7 0.69 0.90 0.76 0.6 0.38 0.93 0.41
0.8 0.70 0.92 0.76 0.7 0.39 0.90 0.43
0.9 0.71 0.94 0.75 0.8 0.39 0.86 0.34

Table 4. Ablation study of τ and σ

α
Loc Err. Cls Err.

Top-1 Top-5 Gt-Known Top-1 Top-5
0.0 54.71 43.35 38.76 30.60 10.60
0.1 54.56 43.13 38.50 30.65 10.62
0.2 53.97 42.53 38.05 30.01 10.15
0.3 53.25 41.50 36.97 30.22 10.23
0.4 53.46 41.43 37.03 30.93 10.73
0.5 52.71 40.82 36.40 30.19 10.21
0.6 53.31 41.44 37.24 30.84 10.71

Table 5. Ablation study of α when fixing τ=0.4, σ=0.1.

τ
Loc Err. Cls Err.

Top-1 Top-5 Gt-Known Top-1 Top-5
0.2 53.50 41.61 36.81 30.87 10.70
0.3 53.24 41.21 36.61 30.92 10.71
0.4 52.71 40.82 36.40 30.19 10.21
0.5 52.94 41.46 37.63 30.18 10.21
0.6 54.95 44.51 41.98 30.90 10.73

Table 6. Ablation study of τ when fixing α=0.5, σ=0.1.

Ablation study of τ and σ in Equs. 3 and 4. Mbg and
Mobj are calculated by Equs. 3 and 4 under different τs and
σs. Average mask IoU, IoG (Intersection over GT), and IoP
(Intersection over Prediction) are reported in Table 4. One
can see that larger IoG implies the generated masks covering
most of the desired region while low IoP means most of the
masks are corrected. As the initial masks, Mbg and Mobj ,
are good enough to guide the model to suppress backgrounds
and active full object extent, statistically.

Ablation study of α, τ and σ. We fix two of these
variables and report the results with the variety of the left
one on ILSVRC in Tables 5, 6 and 7.
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Figure 1. Visualization of the self-correlation maps with first-order similarity (middle row) and second-order similarity(bottom row). The
images are from the CUB-200-2011 [9] testing set.

Figure 2. Visualization of the self-correlation maps with first-order similarity (middle row) and second-order similarity(bottom row). The
images are from the CUB-200-2011 [9] testing set.
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Figure 3. Visualization of the self-correlation maps with first-order similarity (middle row) and second-order similarity(bottom row). The
images are from the CUB-200-2011 [9] testing set.

Figure 4. Visualization of the self-correlation maps with first-order similarity (middle row) and second-order similarity(bottom row). The
images are from the ILSVRC [4] validation set.
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Figure 5. Visualization of the localization maps with CAM [15] (middle row) and the proposed SPA(bottom row). The images are from the
ILSVRC [4] validation set.

Figure 6. Visualization of the localization maps with CAM [15] (middle row) and the proposed SPA(bottom row). The images are from the
ILSVRC [4] validation set.
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ILSVRC [4] validation set.
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