
Generalization on Unseen Domains via Inference-time Label-Preserving Target
Projections

–Supplementary–

Prashant Pandey1, Mrigank Raman*1, Sumanth Varambally*1, Prathosh AP1

1IIT Delhi
{bsz178495, mt1170736, mt6170855, prathoshap}@iitd.ac.in

1. Theory
Proposition 1. The label-preserving transformation f de-
fined in Eq. 1 of the main paper reduces the H-divergence
between any pair of domains on which it is learned. Stated
explicitly:

Assume the case of Binary Classification. We assume
that class prior probabilities for each class is equal in all
the source domains, i.e.

P(Yi = `) = P(Yk = `) ∀i, k ∈ {1, ..., |S|},∀` ∈ {0, 1}.
(1)

where P(Yi = `) = Ex∈DS
i

[1g(x)=`] denotes the propor-
tion of examples having label ` in source domain DSi . If
there exists a metric space denoted by (F , d) and a transfor-
mation function f : X → F such that d(f(x1), f(x2)) =
0 ⇐⇒ g(x1) = g(x2), i.e. x1 and x2 have the same labels
(irrespective of domain), then,

∆H′ [f(DSi), f(DSk)] = 0 ∀i, k ∈ {1, ..., |S|} (2)

whereH′ denotes the space of hypotheses h′ : F → Y , and
f(D) denotes the distribution D under the transformation
f .

Proof. For any i, k ∈ [|S|] and any h′ ∈ H′,∣∣∣Px∈DS
i

[h′(f(x)) = 1]−Px∈DS
k

[h′(f(x)) = 1]
∣∣∣ (3)

=

∣∣∣∣∣ E
x∈DS

i

[1h′(f(x))=1]− E
x∈DS

k

[1h′(f(x))=1]

∣∣∣∣∣ (4)

Now, note that g(x1) = g(x2) =⇒ d(f(x1), f(x2)) =
0 =⇒ f(x1) = f(x2) =⇒ h′(f(x1)) = h′(f(x2)).
This means that all the examples of a given class are
assigned the same label ` by h′, regardless of the source

*Equal contribution

domain. Depending on the labels assigned to the different
classes by h′, these three cases would arise:

Case 1: h′(f(x)) = 1 ∀x ∈ X

=⇒ E
x∈DS

i

[1h′(f(x))=1] =

∫
X
DSi (x)dx = 1

=

∫
X
DSk (x)dx = E

x∈DS
k

[1h′(f(x))=1] (5)

∴
∣∣∣Px∈DS

i
[h′(f(x)) = 1]−Px∈DS

k
[h′(f(x)) = 1]

∣∣∣ = 0

Case 2: h′(f(x)) = 0 ∀x ∈ X

E
x∈DS

i

[1h′(f(x))=1] = E
x∈DS

j

[1h′(f(x))=1] = 0 (6)

∴
∣∣∣Px∈DS

i
[h′(f(x)) = 1]−Px∈DS

k
[h′(f(x)) = 1]

∣∣∣ = 0

Case 3: h′(f(x)) = 1 ⇐⇒ g(x) = ` for some ` ∈ {0, 1}

E
x∈DS

i

[1h′(f(x))=1] = E
x∈DS

i

[1g(x)=`] = P(Yi = `) (7)

Similarly,

E
x∈DS

k

[1h′(f(x))=1] = P(Yk = `) (8)

∴
∣∣∣Px∈DS

i
[h′(f(x)) = 1]−Px∈DS

k
[h′(f(x)) = 1]

∣∣∣
= |P(Yi = `)−P(Yk = `)| = 0 (9)

Since,∣∣∣Px∈DS
i

[h′(f(x)) = 1]−Px∈DS
k

[h′(f(x)) = 1]
∣∣∣ = 0 ∀h′ ∈ H′

(10)

we have,

∆H′ [f(DSi), f(DSk)] =

sup
h′∈H′

∣∣∣Px∈DS
i

[h′(f(x)) = 1]−Px∈DS
k

[h′(f(x)) = 1]
∣∣∣ = 0

∀i, k ∈ {1, ..., |S|} (11)

We note here that in practice, the assumption g(x1) =
g(x2) =⇒ d(f(x1), f(x2)) = 0 need not necessar-
ily hold, i.e. two different images having the same label
might not have coincident representations. However, the
optimization procedure detailed in Eq. 1 of the main paper
forces representations of the same class together into the
same cluster, as described in Section 4.1, thus resulting in a
higher similarity score for images with the same label.

Proposition 2. The expected misclassification rate ob-
tained with a classifier h′ when the projected target z∗t is
used instead of the true target zt, obeys the following upper-
bound:

E(DT ,DT∗) |g̃(zt)− h′(z∗t)| ≤
EDT∗ |g̃(z∗t)− h′(z∗t)|︸ ︷︷ ︸

i

+E(DT ,DT∗) |g̃(zt)− g̃(z∗t)|︸ ︷︷ ︸
ii

(12)

where DT and DT∗ respectively denote the true and the
projected target distributions, respectively.

Proof. Using the triangle inequality on R, we get

|g̃(zt)− h′(z∗t)| ≤ |g̃(z∗t)− h′(z∗t)|+ |g̃(zt)− g̃(z∗t)|
(13)

zt and z∗t are random variables denoting feature vectors cor-
responding to the target point and the point obtained by pro-
jecting the target point to the source manifold. We assume
that these come from the true (DT) and projected (DT∗)
target distributions, respectively. To obtain the average mis-
classification rate, we take an expectation with respect to
their joint distribution.

Since expectation is a linear operation, we can take ex-
pectation over both sides of the inequality. Doing so with
respect to the joint distribution of (DT ,DT∗) on both sides,

E(DT ,DT∗) |g̃(zt)− h′(z∗t)| ≤
EDT∗ |g̃(z∗t)− h′(z∗t)|+ E(DT ,DT∗) |g̃(zt)− g̃(z∗t)|

(14)

Note that in term (i) of the inequality, we can omit the ex-
pectation over DT since there is no dependence on the ran-
dom variable zt.

Art. Cartoon Sketch Photo

Caltech LabelMe Pascal Sun

Artistic Clipart Product Real-World

MNIST MNIST-M SVHN SYN

Figure 1: Few example images from PACS (1st row), VLCS
(2nd row), Office-Home (3rd row) and Digits-DG (4th row)
datasets.

Figure 2: Few example images from CIFAR-10-C dataset
depicting 5 levels of severities and four of the 19 Corruption
types.

2. Datasets

We demonstrate the effectiveness of our algorithm on the
following DG datasets:

PACS: Stands for Photo, Art Painting, Cartoon and

Sketch. This dataset contains a total of 9991 images taken
from different sources such as Caltech256, Sketchy, TU-
Berlin and Google Images. Each image is assigned one out
of seven possible labels namely dog, elephant, giraffe, gui-
tar, horse, house or person. The substantial domain shift in
the dataset poses a significant challenge to DG methods.

VLCS: Stands for VOC2007(Pascal), LabelMe, Caltech
and Sun where each one of them is a different dataset differ-
ing in the camera specifications. There are a total of 10729
photos in the whole dataset where each photo is assigned
one out of five labels namely bird, car, chair, dog, or per-
son.

Office-Home: This dataset is comprised of four domains
namely Art, Clipart, Product and Real-World. There are a
total of 15588 images in the dataset and each image is as-
signed one out of 65 classes. The Real-World images are
taken with a regular camera and the Product images are
taken from a vendor websites and thus differ in background
and quality.

Digits-DG: This digit recognition (0-9) dataset contains
a mixture of 4 different domains namely MNIST, MNIST-
M, SVHN, and SYN that differ drastically in font style and
background. The dataset contains 24000 images.

CIFAR-10-C: This dataset is a robustness benchmark
for deep learning systems. It consists of test images of
CIFAR-10 with 19 different types of corruption having 5
different severity levels (1-5) with 5 indicating most se-
vere. The models are trained on CIFAR-10 and evaluated
on CIFAR-10-C. Please refer to Figure 2 for a few samples
from different severity levels.

3. Implementation Details

3.1. System Configuration and Frameworks

All the experiments are performed using an Intel Xeon
processor (12 Cores) with a base frequency of 2.7 GHz,
32GB RAM, Ubuntu OS and four NVIDIA® Tesla® V100
(16 GB Memory) GPUs. Our implementation was written
in Python 3.6.10 and uses PyTorch version 1.6.0 running on
CUDA version 10.1.

3.2. Architectural details

Please refer to Figure 7 for different architectures and
backbones that we employed to evaluate the performance
of our method on each dataset.

We have compared the number of parameters in other
state-of-the-art (SoTA) models with ResNet-18 as the back-
bone: RSC - 11.18M, Jigen - 11.19M, EisNet - 23.5M,
MMLD - 12.75M, DDAIG - 12.18M. For the proposed
method, the number of parameters are 11.32M. This shows
that it is comparable to the SoTA, since the classifier and
the generator networks used are shallow.

3.3. Hyperparameter choices

We select hyperparameters based on model performance
on a validation set consisting of data from the source do-
mains. We use the splits given with the dataset whenever
they are available. When the validation split for the source
domains are not explicitly provided, we split our training
data into a small validation set for model selection. We
choose the best model based on (a) the average loss LA
(for fθ) (b) the average accuracy (for Cψ) (c) the average
reconstruction/discriminator loss (for Gφ) on the validation
set.

Training the network fθ: We use the SGD optimizer
with a learning rate of 0.001 to train the fθ network for
all the datasets except for Digits-DG and CIFAR-10-C
datasets. Digits-DG dataset is trained with a learning rate
of 0.05 while for CIFAR-10-C, we train the network with
an initial learning rate of 0.1. We use the same backbone as
described in [4] for Digits-DG dataset and for CIFAR-10-
C, the backbone employed is Wide Residual Network [3]
(WRN) with depth and width of 16 and 4, respectively. We
train for 200 epochs with the ResNet-18/ResNet-50 back-
bones, while AlexNet models are trained for 250 epochs.
For the Digits-DG dataset, the fθ network is trained for
100 epochs while WRN is trained for 200 epochs with a
weight decay of 0.0005. In WRN, the initial learning rate
of 0.1 is reduced to 0.02, 0.004 and 0.0008 at the 50th,
100th, and 150th epoch, respectively. As a regularization,
we apply random image augmentations, namely horizontal
flip (with probability 0.5), color jitter (with probability 0.8),
greyscaling (with probability 0.2), applying Gaussian Blur
(with a kernel of size 21) and adding Gaussian noise (with
σ = 0.2). Batch size for all the backbones is fixed to be
128.

Training the VAE/GANGφ: VAE is trained with a learn-
ing rate of 0.005 and momentum of 0.9 using SGD opti-
mizer for 350 epochs in all cases except for the Digits-DG
dataset, where it is trained for 150 epochs. We train with a
batch size of 64 in all settings. We use the standard VAE
objective, with a combination of both the L1 and L2 losses
for the reconstruction error term. In case of GAN (on VLCS
dataset), the learning rate is set to be 0.0002 and it is trained
for 450 epochs.

Training the Classifier Cψ: The classifier Cψ is trained
using the Adam optimizer with a learning rate of 0.003 for
15, 20 and 30 epochs on the Digits-DG backbone, ResNet-
based models and AlexNet-based models respectively, with
a batch size of 64 in all cases.

(a) Photo as source (b) Cartoon as source (c) Art as source

Figure 3: Relative performance of DG methods trained on a single domain of PACS dataset.

Iteration
rate (β)

Avg. number of
iterations to stop

Total
iterations (M) Acc. (in %)

0.05 465 20000 81.32
0.01 602 20000 81.79
0.005 2672 20000 80.92
0.001 15976 20000 81.56

Table 1: Comparison of performance on Sketch as a target
domain for different values of iteration rate β.

3.4. Iteration rate β

To project a target example zt on to the manifold of
source features (Zs) during inference, we follow an itera-
tive optimization procedure where a latent vector u (initially
drawn from an isotropic Gaussian distribution) is optimized
in the generative latent space of Gφ. We examine the effect
of varying the iteration rate β in this optimization procedure
through the following experiment: for a fixed iteration rate
β, selected from the values {0.05, 0.01, 0.005, 0.001}, we
perform the optimization process until the ‘optimal stop-
ping point’ (which corresponds to the “elbow” point) is
reached. We report the test accuracy in each case. As shown
in Table 1, we have validated that for a large number of it-
erations (M = 20000), all reasonably small iteration rates
give consistent performance on target domains. The sec-
ond column in Table 1 reports the average of all optimal
stopping points (n∗) of the target examples for the Sketch
domain of the PACS dataset.

Thus, we conclude that for reasonably small choice of β,
the performance of the inference-time optimization proce-
dure is unaffected by varying β. Hence, we fix the iteration
rate to be 0.01 in all our experiments for uniformity.

4. Additional Results

4.1. Class-wise alignment

Despite the large inter-domain discrepancy in the PACS
dataset, it is observed that when we train the fθ network on

(a) w/o fθ (Deep All) (b) with fθ

Figure 4: T-SNE plot of features obtained from mixture of
PAC (Photo, Art, Cartoon) as source domains using a) Deep
All and b) fθ network.

(a) source-source A-distance (b) ablation with Digits-DG

Figure 5: a) A-distance (lower is better) between sources
using Deep All and label-preserving features from fθ. b)
Ablation on different components of the proposed method
with Digits-DG dataset.

Photo, Art and Cartoon as source domains, we obtain fea-
tures that align (or cluster) class-wise which is not the case
with Deep All features on same source domains as shown
by T-SNE plots in Figure 4. This demonstrates the effec-
tiveness of the objective of fθ network in bringing exam-
ples from the same class together in the feature space F
irrespective of the domains they belong to. It helps shallow
classifiers (with a single fully connected layer as in Cψ) to
distinguish between features which are more distinct across

Figure 6: Comparison of performance on all 19 Corruption
types with severity level 5.

the class-labels. For features extracted from the Deep All
model, the separation across the classes is less which makes
the shallow classifier less robust and more error-prone.

We also demonstrate the effectiveness of the fθ network
in reducing source-source H-divergence by comparing the
A-distance between features extracted from different source
domains through Deep All and the fθ network. These re-
sults are presented in 5a.

4.2. Low resource settings

We train different models on each of the source domains,
namely Photo, Cartoon and Art and test on the other three
domains of the PACS dataset. We observe that our method
is significantly more data efficient compared to the base-
lines, as shown in Figure 3, owing to the fact that fθ learns
label information from pairs of images and Gφ facilitates
projection on the manifold of label-reserving source fea-
tures.

4.3. Ablation with Digits-DG

We conduct ablation with Digits-DG [4] dataset by train-
ing the proposed method with and without fθ and Gφ net-
works. Figure 5b shows the merit of the proposed com-
ponents in improving the performance on the Digits-DG
dataset.

4.4. Robust DG

Figure 6 shows the robustness of our method against
all 19 types of corruptions from the CIFAR-10-C dataset
[1]. The proposed method trained on CIFAR-10 dataset,
achieves generalization to the corrupted target images hav-
ing severity level 5.

5. Limitations
One potential drawback of the proposed method is the re-

quirement of a relatively larger inference time as optimiza-

tion is performed for each target example. While this is
a potential drawback of the method, we believe it doesn’t
prevent its practical use, as also noted in [2]. Further, there
are only a few hundred iterations needed (very less as com-
pared to training) which takes about 50-100ms (on GPU) to
execute. Also note that we do not update any of the model
parameters during inference using the target data.

References
[1] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-

ral network robustness to common corruptions and perturba-
tions. In International Conference on Learning Representa-
tions, 2019.

[2] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei
Efros, and Moritz Hardt. Test-time training with self-
supervision for generalization under distribution shifts. In
International Conference on Machine Learning, pages 9229–
9248. PMLR, 2020.

[3] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. In Edwin R. Hancock Richard C. Wilson and William
A. P. Smith, editors, Proceedings of the British Machine Vi-
sion Conference (BMVC), pages 87.1–87.12. BMVA Press,
September 2016.

[4] Kaiyang Zhou, Yongxin Yang, Timothy M Hospedales, and
Tao Xiang. Deep domain-adversarial image generation for
domain generalisation. In AAAI, pages 13025–13032, 2020.

(a) Multi-source DG on PACS with AlexNet

(b) Multi-source DG on PACS with RestNet-18

(c) Multi-source DG on VLCS with AlexNet

(d) Multi-source DG on Office-Home with ResNet-18

(e) Multi-source DG on Digits-DG

(f) Multi-source DG on VLCS with GAN

(g) Multi-source DG on PACS with ResNet-50

(h) Robust DG on CIFAR-10-C with Wide Residual Network (WRN)

Figure 7: Architectures used for each dataset. Conv2d, ConvT2d, MaxPool2d and FC are Convolution 2D, Convolution
Transpose 2D, 2D Max Pooling and Fully Connected layers, respectively. Cψ is a single hidden layer classifier. Square
bracket represents kernel size with number of output channels written right after it. u represents a vector from the latent
space of Gφ. ReLU/LeakyReLU activations are used in all blocks. All components fθ, Gφ and Cψ are trained independently.

