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In this supplementary material, we present detailed con-
figuration of the tracker, additional experiments and ablation
studies. We also investigate oracle performance, analyze
failure cases, and show some patch visualizations.

A. Hyper-parameters
We show the configuration of our tracker in Algorithm

1. Some of the parameters, such as number of frames to
keep backdrops and the matching metric, are fixed. For more
details, please refer to our released source code.

Algorithm 1 Configuration of the tracker in QDTrack.

tracker=dict(
type=’QuasiDenseEmbedTracker’,
# score threshold to start a new track
init_score_thr=0.8,
# score threshold to continue a track
obj_score_thr=0.5,
# score threshold for data association
match_score_thr=0.5,
# number of frames to keep tracks
memo_tracklet_frames=10,
# number of frames to keep backdrops
memo_backdrop_frames=1,
# momentum to update the embeddings
memo_momentum=0.8,
# duplicate removal to tackle multi-targets cases
nms_backdrop_iou_thr=0.3,
nms_class_iou_thr=0.7,
# the matching metric
match_metric=’bisoftmax’)

Dataset specific parameters. Our object association only
relies on appearance, so it is robust to different motion pat-
terns in different datasets. The experiments share the same
tracking parameters except TAO, because TAO uses 3D mAP,
instead of CLEAR MOT metrics, for evaluation.

On TAO, the terms “init_score_thr" and “obj_score_thr"
are set to 0.0001 to obtain a high recall. Considering the
numerous tracks with these thresholds, we do not maintain
backdrops in these experiments.

B. Supplementary experiments
MOT17 with public detectors Following the strategy in
Tracktor [1] and CenterTrack [7], we evaluate our method
with public detectors on MOT17. That is, a new trajectory
is only initialized from a public detection bounding box. As
shown in Table 1, our method outperforms existing results
by a large margin. Our method outperforms CenterTrack by
3.1 points on MOTA and 5.5 points on IDF1.
TAO Table 2 presents detailed results on the TAO [4]
dataset. Although QDTrack does not perform zero-shot and
few-shot learning for the long-tail categories, our method is
still a stronger baseline method on this dataset and paves the
way for future studies.
BDD100K Segmentation Tracking The results on the
BDD100K segmentation tracking validation set are pre-
sented in Table 3.

Table 1: Results on MOT17 test set with public detector. Note that we do not use extra data for training. ↑ means higher is
better, ↓ means lower is better. ∗ means external data besides COCO and ImageNet is used.

Dataset Method MOTA ↑ IDF1 ↑ MOTP ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDs ↓

Public MOT17

Tracktor++v2 [1] 56.3 55.1 78.8 498 (21.1) 831 (35.3) 8866 235449 1987 (34.1)
GSM_Tracktor [6] 56.4 57.8 77.9 523 (22.2) 813 (34.5) 14379 230174 1485 (25.1)
MPNTrack∗ [3] 58.8 61.7 78.6 679 (28.8) 788 (33.5) 17413 213594 1185 (19.1)
Lif_T∗ [5] 60.5 65.6 78.3 637 (27.0) 791 (33.6) 14966 206619 1189 (18.8)
CenterTrackPub∗ [7] 61.5 59.6 78.9 621 (26.4) 752 (31.9) 14076 200672 2583 (40.1)

Ours 64.6 65.1 79.6 761 (32.3) 666 (28.3) 14103 182998 2652 (39.3)



Table 2: Results on TAO challenge benchmark.

Method Split AP50 AP75 AP AP50(S) AP50(M) AP50(L)

SORT_TAO [4] val 13.2 - - - - -
Ours val 16.1 5.0 7.0 2.4 4.6 9.6

SORT_TAO [4] test 10.2 4.4 4.9 7.7 8.2 15.2
Ours test 12.4 4.5 5.2 3.7 8.3 18.8

Table 3: Results on the BDD100K segmentation tracking
validation set. I: ImageNet. C: COCO. S: Cityscapes. B:
BDD100K. "frozen" means adopting the pretrained model
from the BDD100K tracking set and only finetune the mask
head.

Method Pretrained mMOTSA ↑ mMOTSP ↑ mIDF1 ↑ ID sw. ↓
SORT [2] I, C, S 11.4 59.7 22.1 15408
Ours I, C, S 20.2 59.3 36.0 1681
Ours (frozen) I, B 26.6 64.9 45.3 954

Table 4: Ablation studies of momentum of the embeddings
on BDD100K tracking validation set. Note the model for
this table is re-trained that the results are slightly different
from the results in the main paper.

Momentum mMOTA ↑ mIDF1 ↑ MOTA ↑ IDF1 ↑

0.6 37.0 50.9 63.3 71.4
0.7 37.0 50.9 63.3 71.3
0.8 37.0 50.7 63.3 71.1
0.9 37.0 50.6 63.3 70.8
1.0 37.0 50.5 63.3 70.5

C. Additional ablation studies
Momentum of the embeddings. Assume there is an exist-
ing track and its embedding is E0. This track is associated to
an object on the current frame and its embedding is E1. The
new embedding of this track will be m ∗E1 +(1−m) ∗E0,
where m is the momentum. The momentum does not im-
prove the results too much but it considers the history of
embeddings. We show the ablation studies of different val-
ues of momentum in Table 4.
Sensitivity of the γ1 and γ2 in Eq. 7. We found γ2 does
not change the final results while γ1 does. If γ1 is higher
than 0.5, the performance will drop, but does not matter if it
is lower than 0.5.

D. Oracle analysis
We investigate the performances of two types of oracles:

detection oracle and tracking oracle on BDD100K tracking
validation set. For detection oracle, we directly extract fea-
ture embeddings of the ground truth objects in each frame
and associate them using our method. For tracking oracle,
we use ground truth tracking labels to associate the detected
objects.

Detection oracle The results are shown in Table 5. We
can observe that all MOTAs are higher than 94%, and some
of them are even close to 100%. This is because we use
the ground truth boxes directly so that the number of false
negatives and false positives are close to 0.

The metric IDF1 and ID Switches can measure the per-
formance of identity consistency. The average IDF1 over the
8 classes is 88.8%, which is 38 points higher than our result.
The gaps on classes “car” and “pedestrain” are only 11.1
points and 19.3 points between oracle results and our results
respectively, while gaps on other classes are exceeding 30
points. These results show that if highly accurate detection
results are provided, our method can obtain robust feature
embeddings and associate objects effectively. However, the
huge performance gaps also indicate the demand of promot-
ing detection algorithms in the video domain. We also notice
that the total number of ID switches in the oracle experiment
is higher than ours. This is due to the high object recalls
in the oracle experiments, as more detected instances may
introduce more ID switches accordingly.
Tracking oracle The results are shown in Table 6. We can
observe that when associating object directly with tracking
labels, the mIDF1 is only boosted by 4.3 points. This promis-
ing oracle analysis shows the effectiveness of our method
and indicates that our method is bounded more by detection
performance than tracking performance.

E. Failure case analysis
Our method can distinguish different instances even they

are similar in appearance. However, there are still some
failure cases. We show them below with figures, in which
we use yellow color to represent false negatives, red color
to represent false positives, and cyan color to represent ID
switches. The float number at the corner of each box in-
dicates the detection score, while the integer indicates the
object identity number. We use green dashed box to highlight
the objects we want to emphasize.
Object classification Inaccurate classification confidence
is the main distraction for the association procedure because
false negatives and false positives destroy the one-to-one
matching constraint. As shown in Figure 1, the false neg-
atives are mainly small objects or occluded objects under
crowd scenes. The false positives are objects that have simi-
lar appearances to annotated objects, such as persons in the
mirror or advertising board, etc.

Inaccurate object category is a less frequent distraction
caused by classification. The class of the instance may
switch between different categories, which mostly belong to
the same super-category. Figure 2 shows an example. The
category of the highlighted object changes from “rider” to
“pedestrian” when the bicycle is occluded. Our method fails
in this case because we require the associated objects have
the same category.



Table 5: Detection oracle analysis. The numbers in the round brackets mean the gaps between oracle results and our results.

Category Set MOTA ↑ IDF1 ↑ MOTP ↑ FN ↓ FP ↓ ID Sw. ↓ MT ↑ ML ↓

Pedestrian val 94.3 79.5 (+19.3) 99.8 1 1 3226 3506 0
Rider val 95.8 88.5 (+40.4) 99.9 0 0 107 134 0
Car val 97.7 86.1 (+11.1) 99.9 0 0 7716 13189 0
Bus val 99.2 93.0 (+31.2) 100.0 0 0 72 196 0
Truck val 98.8 90.3 (+33.8) 100.0 0 0 340 726 0
Bicycle val 88.2 79.5 (+31.8) 98.7 8 8 470 243 0
Motorcycle val 97.0 94.5 (+37.8) 99.8 0 0 27 44 0
Train val 99.4 98.7 (+98.7) 100.0 0 0 2 6 0

All val 96.3 88.8 (+38.0) 99.8 9 9 11960 18044 0

Table 6: Tracking oracle analysis. The numbers in the round brackets mean the gaps between oracle results and our results.

Category Set MOTA ↑ IDF1 ↑ MOTP ↑ FN ↓ FP ↓ ID Sw. ↓ MT ↑ ML ↓

Pedestrian val 54.7 71.2 (+11.0) 77.6 14990 10095 755 1835 367
Rider val 31.4 52.6 (+4.5) 76.6 1390 242 115 16 56
Car val 74.3 82.9 (+7.9) 84.1 54585 31014 2309 8759 1141
Bus val 38.2 65.8 (+4.0) 86.1 3532 2031 57 61 41
Truck val 37.0 60.9 (+4.4) 84.7 12719 4259 247 149 239
Bicycle val 30.6 55.6 (+7,9) 75.4 2031 714 125 60 58
Motorcycle val 14.6 51.7 (-5.0) 76.4 443 292 35 10 18
Train val -0.6 0.0 (+0.0) 0.0 308 2 0 0 6

All val 35.0 55.1 (+4.3) 70.1 89998 48649 3643 10890 1926

These failure cases caused by object classification suggest
the improvements on video object detection algorithms. We
can exploit temporal or tracking information to improve the
detectors, thus obtaining better tracking performance.
Object truncation/occlusion Object truncation/occlusion
causes inaccurate object localization. As shown in Figure 3,
the highlighted objects are truncated by other objects. The
detector detects two objects. One of them is a false positive
box that only covers a part of the object. The other one is a
box with a lower detection score but covers the entire object.
This case may influence the association process if the two
boxes have similar feature embeddings.

An instance may have totally different appearances before
and after occlusion that result in low similarity scores. As
shown in Figure 4, only the front of the car appears before
occlusion, while only the rear of the car appears after oc-
clusion. Our method can associate two boxes if they cover
the same discriminative regions of an object, not necessarily
the exact same region. However, if two boxes cover totally
different regions of the object, they will have a low matching
score.

Another corner case is the extreme high-level truncation.
As shown in Figure 5, the highly truncated objects only ap-
pear a little when they just enter or leave the camera view.
We cannot distinguish different instances effectively accord-
ing to the limited appearance information.

F. Visualizations

We show the visualizations of different instance patches
during the testing procedure in Figure 6. The detected
objects in each frame are matched to prior objects via bi-
directional softmax. The prior objects include tracks in the
consecutive frame, vanished tracks, and backdrops. We an-
notate them with different colors. Each detected object is
enclosed by the same color of its matched object. We can
observe that most false positives in the current frame are
matched to backdrops, which demonstrates keeping back-
drops during the matching procedure helps reduce the num-
ber of false positives.

G. Qualitative results

We show some qualitative results of our method on
BDD100K dataset and MOT17 dataset in Figure 7 and Fig-
ure 8 respectively. The results are sampled from a certain
interval for illustrative purposes.
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Figure 1: Failure cases caused by inaccurate classification confidences. The objects enclosed by yellow rectangles are false
negatives, and the objects enclosed by red rectangles are false positives.

Figure 2: Failure case caused by inaccurate object category. The category of the highlighted object changes from “rider” to
“pedestrian” due to the occlusion of the bicycle. They cannot be associated because they do not satisfy the category consistency.

Figure 3: Inaccurate object localization caused by truncation. The red false positive box only covers part of the object, while
the yellow box covers the entire object. They may have similar feature embeddings thus influencing the association procedure.
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Figure 4: Two detected objects in different frames cover totally different regions of the object thus having low appearance
similarity.

Figure 5: Our method cannot distinguish different instances effectively according to the limited appearance information in
highly truncated objects.
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Figure 6: The visualizations of different instance patches during the testing procedure. The detected objects in the current
frame are matched to tracklets in the consecutive frame, vanished tracklets, and backdrops via bi-directional softmax



Figure 7: Qualitative results of our method on BDD100K dataset.

Figure 8: Qualitative results of our method on MOT17 dataset.
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