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I. Introduction

In this supplementary material, we first elaborate on the
architecture of the Tearing network (T-Net) in Section II.
Then additional experimentation alongside with a demon-
stration on point cloud interpolation are presented in Sec-
tion III.

II. Architecture of the Tearing Network

The proposed Tearing network is composed of two sets
of shared MLP layers. It has a similar model size as the
FoldingNet [7] (or F-Net in our work). Its detailed structure
is shown in Figure I.

First, the (replicated) codeword C, the first F-Net output
X(1), and the initial 2D grid U(0) are concatenated as a
45 × 45 × 517 volume which is fed to the first series of
shared MLP layers. This series of MLP layers have output
dimensions of 512, 512, and 64, respectively.

Next, a second input volume is formed similar to the
previous step. Additionally, the 64-dimension feature output
from the previous step is further concatenated to form a
45× 45× 581 volume. Finally, it is fed to the second series
of shared MLP layers. This series of MLP layers have output
dimensions of 512, 512, and 2, respectively. The final T-Net
output of size 45× 45× 2 (reshaped to 2025× 2) is added
to U(0), leading to the modified 2D grid U(1).

Unlike the AtlasNet [4], AtlasNetV2 [3], and the Point
Capsule Network [8] which require multiple elementary en-
coders/decoders for reconstruction, the proposed TearingNet,
advantageously, needs only one F-Net and one T-Net in the
decoder to handle complex scene point clouds.

III. More on Experimentation

This section presents more details on our training process
(Section III-A), followed by the generation of the multi-
object datasets (Section III-B). We then present additional
quantitative and qualitative evaluation (Section III-C). In
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the end, a demonstration of point cloud interpolation is pro-
vided to gain more insights about the TearingNet codewords
(Section III-D).

III-A. More Training Details

Our TearingNet is trained with a two-step strategy to fully
squeeze its advantages. The Encoder network (E-Net) and
the Folding network (F-Net) are first pre-trained together
using a modified version of Eq. (4), where we down-scale its
second term, i.e., 1

m

∑
x̂∈X̂minx∈X ‖x− x̂‖2, by weighting

it with a small factor such as 0.1. This is to let the first term
dominates, so that the preliminary reconstruction roughly
encloses the ground-truth surface. In the second step, we
adopt a smaller learning rate and train the overall TearingNet
with the intact augmented CD of Eq. (4)—this fine-tuning
step lets the Tearing network (T-Net) gradually carve the
details of the reconstructed point cloud.

This training strategy is well suited to the design of the
pair of modules, T-Net and F-Net. For instance, it leads
to an improvement in CD (×10−2) from 6.66 to 6.43 on
KIMO-4 compared to training from scratch. We also note
that CD is observed to be inferior to EMD with respect to
visual quality [1, 5] due to a phenomenon we quoted as point-
collapse—points are over-populated in some regions of the
reconstructed point clouds. For example, see the AtlasNet
result in the last row of Table 1 in the paper, where the
point distribution is unbalanced. With this two-step training
strategy, we observe that the point-collapse phenomenon is
greatly relieved. This finding holds for variants of CD using
squared distance terms, and summing the two distance terms
instead of taking the max{·, ·}. Deeper analysis is left for
future investigation.

III-B. More Details on Multi-Object Datasets

Both the KITTI Multi-Object (KIMO) and the CAD
Model Multi-Object (CAMO) datasets simulate driving
scenes by putting together object point clouds. Different
from the KIMO datasets coming from real LiDAR data, the
CAMO datasets are assembled using CAD models. It is syn-
thesized with point clouds labeled as Person, Car, Cone
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Figure I. Architecture of the Tearing network (T-Net), which employs two series of shared MLP layers to modify the input 2D grid.

and Plant from ModelNet40 [6] and point clouds labeled
as Motorbike from ShapeNet [2].

In a generated multi-object dataset (CAMO or KIMO),
the proportion of point clouds with k objects follows a bino-
mial distribution. Particularly, we randomly let each of the
grid on the K ×K playground to be occupied by an object
with a probability p = 0.5. Then the case with 0 object on
the playground is excluded. When placing an object on a
grid, we first normalize it within a sphere of diameter 1, then
translate it vertically to let its bottom touch the plane of the
“ground”. In this way, we generate multi-object scenes with
ample topological configurations.

III-C. More Performance Comparisons

Based on the same settings as introduced in Section 5 of
the paper, more evaluation of the proposed TearingNet are
performed and presented herein.

Quantitative: We first provide an additional quantita-
tive evaluation of the proposed TearingNet with the CAMO
datasets. Specifically, the 3D point cloud reconstruction
results are reported in Table I; while the object counting
and object detection results are presented in Table II. By
inspecting Table I and Table II we observe similar trends as
presented in Section 5.3 of the paper, and again see the supe-
riority of the proposed TearingNet in terms of reconstructing
and representing point clouds with ample topologies.

Qualitative: More visual comparisons between the Tear-
ingNet and other competing methods are presented in Ta-
ble III, where we zoom in the objects/regions in the red
boxes and show them in the blue boxes for better visual-
ization. Again, the multi-object reconstructions provided
by AtlasNet have unbalanced point distributions. For in-
stance, some of its reconstructed objects are sparser than the

Table I. Evaluation of reconstruction on the CAMO datasets.

Metrics Methods
Datasets

CA.-3 CA.-4 CA.-5 CA.-6

CD
(×10−2)

LatentGAN 8.05 11.59 15.98 20.07
AtlasNet 6.83 8.76 11.15 13.74

FoldingNet 6.79 8.65 11.06 13.76
Cascaded F-Net 6.90 8.81 11.20 13.89

TearingNetTF 6.99 8.76 11.29 13.66 ]
TearingNetGF 6.88 8.61 10.95 13.25

TearingNet (Ours) 6.88 8.59 10.86 13.15
TearingNet3 (Ours) 6.85 8.56 10.78 13.09

EMD

LatentGAN 1.909 2.971 3.371 4.726
AtlasNet 1.359 2.450 2.449 2.949

FoldingNet 0.951 1.354 1.966 2.669
Cascaded F-Net 1.192 1.442 2.077 2.581

TearingNetTF 0.858 1.212 2.006 2.430
TearingNetGF 0.774 1.111 1.679 2.055

TearingNet (Ours) 0.780 1.074 1.651 2.049
TearingNet3 (Ours) 0.781 1.103 1.610 1.994

ground-truths. Moreover, most results of FoldingNet (and
some results of AtlasNet) appear to be noisy. In contrast,
TearingNet consistently provides reconstructions close to the
inputs, with clean and neat appearances.

III-D. Point Cloud Interpolation

To further understand how the codewords of TearingNet
naturally embed the point cloud topology, we inspect if the
TearingNet can novelly interpolate between two point clouds
[7]. Given two point clouds, their codewords c1 and c2 are
first computed by our encoder (E-Net). The codewords are
then weighted averaged as (1− w) c1 + w c2 with different
weights w ranging from 0 to 1. The averaged codewords are
fed to the TearingNet decoder to reconstruct the interpolated
point clouds.

Table IV provides four examples of point cloud interpola-
tion (with the torn 2D grids) on different datasets. For both
the point clouds and the 2D grids, we draw the edges of the



Table II. Evaluation of object counting and object detection on the
CAMO datasets.

Tasks Methods
Datasets

CA.-3 CA.-4 CA.-5 CA.-6

Counting
(MAE,×10−1)

LatentGAN 0.426 4.057 8.764 10.654
AtlasNet 0.095 2.430 5.601 7.618

FoldingNet 0.068 1.161 4.225 7.178
Cascaded F-Net 0.070 1.195 4.456 7.266

TearingNetTF 0.067 0.734 4.284 7.076
TearingNetGF 0.065 0.663 4.250 7.073

TearingNet (Ours) 0.064 0.656 4.199 7.044
TearingNet3 (Ours) 0.064 0.645 4.203 6.988

Detection
(Accuracy, %)

LatentGAN 93.17 63.78 65.65 78.80
AtlasNet 88.84 73.79 73.58 83.42

FoldingNet 92.71 80.12 77.10 82.92
Cascaded F-Net 93.15 82.85 78.81 82.43

TearingNetTF 93.33 83.35 79.44 83.52
TearingNetGF 93.44 83.42 79.72 84.55

TearingNet (Ours 93.42 83.44 79.70 84.55
TearingNet3 (Ours) 93.48 83.42 79.74 84.54

graph Ĝ (as presented in Section 3.1) to explicitly check how
tearing happens. We see the topologies of the point clouds
change as the 2D grids are deformed and the graph edges
are broken. Especially, for the multi-object point clouds, the
objects are split/merged, reshaped, and translated to form
new point clouds. We also see that the interpolated point
clouds manifest geometric characteristics of both the two
input point clouds, e.g., the torus at step 4/7. It affirms that
the learned feature space is highly expressive in terms of
geometry, which facilitates the network to generate novel
point clouds that have never been seen during training.
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Table III. Visual comparisons of point cloud reconstructions. Points are colored according to their indices. S: ShapeNet; T: Torus;
C: CAMO-5; K: KIMO-5. Objects/regions in the red boxes are zoomed in and shown in the blue boxes.
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Table IV. Point cloud interpolation with TearingNet. Points are colored according to their indices. G1, G2 - Ground-truths of the two point
clouds. Other rows show interpolations with different weights. Non-zero graph edges are also drawn.
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