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A. Sequence Cuts

The DAVIS frames accompanying the frequently used
Event-Camera Dataset [1] usually suffer from motion blur
and under/overexposure. For this reason, we only evaluate
reconstruction accuracy on sections of this dataset in which
the frames appear to be of high quality. The exact cut times
are adopted from [2] and shown in Table 1. Additionally,
we only evaluate optical flow accuracy on these sections to
remain comparable to the results reported in [2].

Table 1: Sequence cuts used for evaluation on the Event-
Camera Dataset [1]. Adopted from [2].

Sequence Start [s] End [s]
boxes_6dof_cut 5.0 20.0
calibration_cut 5.0 20.0

dynamic_6dof_cut 5.0 20.0
office_zigzag_cut 5.0 12.0
poster_6dof_cut 5.0 20.0
shapes_6dof_cut 5.0 20.0
slider_depth_cut 1.0 2.5

B. Impact of Event Deblurring

As discussed in this work, our self-supervised image re-
construction framework is designed around the event-based
photometric constancy equation. While the right-hand side
of this equation is obtained via the dot product between the
warped spatial gradients of the last reconstructed image and
the estimated optical flow; we propose that the left-hand
side is obtained by integrating the deblurred (and averaged)
input events. Since the main supervisory signal used to train
our image reconstruction architectures comes from the com-
parison of the two sides of this equation, after training, the
spatial gradients of the reconstructed images are correlated
with the integrated events. These events, if not warped to
the timestamp of the reconstructed frame, would introduce
motion blur into the images. The amount of motion blur
would depend on the density of events and on the length of
the partition of events.
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Figure 1: Qualitative evaluation of the impact of event de-
blurring on the quality of the reconstructed frames on se-
quences from the ECD [1] dataset.

Table 2: Quantitative evaluation of the impact of event de-
blurring prior to event integration on the ECD [1] and HQF
[2] datasets. For each dataset, we report the mean MSE (]),
SSIM [3] (1) and LPIPS [4] (). Best in bold.

ECD* HQF
MSE SSIM LPIPS MSE SSIM LPIPS
E2VIDg (w/ deblurring) 0.06 0.55 0.37 0.06 0.48 0.47
E2VIDg (w/o deblurring)  0.14  0.30 0.58 0.11  0.28 0.64

*Sequence cuts in Table 1.

To validate this approach, we conducted an ablation
study in which we trained the same ReconNet architecture
(accompanied by the same pre-trained optical flow network)
with and without event deblurring prior to event integration.
Quantitative results are presented in Table 2, and are sup-
ported by qualitative results in Fig. 1. As shown, event de-
blurring is a crucial mechanism to reconstruct sharp images
from the events. Without it, the reconstructed frames appear
less sharp for the same number of input events, and the net-
work is characterized by significantly worse error metrics
on the evaluation datasets.

C. Additional Quantitative Results

A breakdown of the quantitative results of our FlowNet
and ReconNet architectures on the ECD [1] and HQF [2]
datasets can be found in Tables 3 and 4, respectively.



Figure 2: Optical flow field color-coding scheme. Direction
is encoded incolor hue, and speed in color brightness.

D. Additional Qualitative Results

Figs. 3, 4, and 5 show additional qualitative results of our
FlowNet and ReconNet architectures on the ECD [1] and
HQF [2] datasets. Lastly, Fig. 6 shows qualitative results
on the high-resolution automotive dataset recently released
by Prophesee [S5]. The optical flow color-coding scheme for
Figs. 3 and 6 can be found in Fig. 2.
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Table 3: Breakdown of the quantitative evaluation of our FlowNet architectures on the ECD [1] and HQF [2] datasets. For
each dataset, we report the FWL [2] (7).

EV—FlOWNGtFw_MVSEC [6] EV—F]OWN&[GT_SIM [2] EV—F]OWNC[E\V_DR (Ours) FiI'CFlOWNCIEw_DR (OUI'S)

ECD*
boxes_6dof_cut 1.42 1.46 1.22 1.37
calibration_cut 1.20 1.31 1.11 1.22
dynamic_6dof_cut 1.37 1.39 1.22 1.33
office_zigzag_cut 1.13 1.11 1.09 1.18
poster_6dof_cut 1.50 1.56 1.20 1.34
shapes_6dof_cut 1.15 1.57 1.51 1.38
slider_depth_cut 1.73 2.17 1.80 1.88
Mean 1.36 1.51 1.31 1.39
HQF
bike_day_hdr 1.22 1.23 1.49 1.52
boxes 1.75 1.80 1.68 1.72
desk 1.23 1.35 1.35 1.42
desk_fast 1.43 1.50 1.42 1.47
desk_hand_only 0.95 0.85 1.14 1.23
desk_slow 1.01 1.08 1.23 1.27
engineering_posters 1.50 1.65 1.65 1.71
high_texture_plants 0.13 1.68 1.71 1.77
poster_pillar_1 1.20 1.24 1.39 1.45
poster_pillar_2 1.16 0.96 1.10 1.18
reflective_materials 1.45 1.57 1.62 1.63
slow_and_fast_desk 0.93 0.99 1.68 1.77
slow_hand 1.64 1.56 1.90 1.96
still_life 1.93 1.98 1.76 1.97

Mean 1.25 1.39 1.51 1.58




Table 4: Breakdown of the quantitative results of our ReconNet architectures on the ECD [1] and HQF [2] datasets. For each
sequence, we report the MSE (|), SSIM [3] (1) and LPIPS [4] (}). The F and E subscripts determine whether our networks
were trained in combination with FireFlowNet or EV-FlowNet, respectively.

MSE SSIM LPIPS
FireNetr  FireNetz E2VIDp  E2VIDg FireNetr  FireNet; E2VIDp E2VIDg FireNety  FireNet; E2VIDp  E2VIDg
ECD*
boxes_6dof_cut 0.0533  0.0554  0.0540  0.0541 0.5705  0.5538  0.5785  0.5997 03736 04170 03776 0.3781
calibration_cut 00531  0.0620 0.0779  0.0677 0.5464  0.5356  0.5445  0.5594 02770 03046 02982  0.2937
dynamic_6dof.cut  0.0950  0.0780  0.1030  0.0845 04037 04036 04123 04519 04773 04969 04576  0.4424
office_zigzag_cut 0.0452  0.0427  0.0442  0.0617 0.5019  0.5033 04970  0.4807 03634 04122 03350  0.3485
poster_6dof_cut 0.0592  0.0567  0.0593  0.0521 0.5385 05211  0.5613  0.5823 04039 04396 03941  0.3909
shapes_6dof_cut 0.0500  0.0928  0.0608  0.0594 05719 05262 0.5673  0.6297 04303 04313 04532 03554
slider_depth_cut 00612 00613 00840  0.0660 0.5200  0.5265 04758  0.5174 03613 03834 03536 03728
Mean 0.0595  0.0641  0.0690  0.0636 05218 0.5100 0.5195  0.5459 0.3838 04121 0.3813  0.3688
HQF
bike_day_hdr 0.0629  0.0587  0.0552  0.0519 04317 04471 04574 04835 0.5248  0.5584  0.5028  0.5266
boxes 0.0596  0.0549  0.0694  0.0562 04885 04912 04853  0.5190 03994 04439 04108 04164
desk 0.0619 00649  0.0817  0.0697 04776 04779 04677 04972 03938 04373 04018 03914
desk_fast 0.0588  0.0624  0.0711  0.0637 04935 04882  0.5027  0.5238 04482 04999 04425 04515
desk_hand_only 0.0805  0.0910  0.0755  0.0594 0.5143 05106 05134 0.5545 0.5971  0.6202  0.5619  0.5438
desk_slow 0.0783  0.0894  0.0976  0.0759 0.5011 04341 02852  0.4998 05214  0.6029  0.6689  0.5253
engineering_posters  0.0570  0.0541  0.0783  0.0656 04690 04776 04456  0.4797 04250 04417 04345 04528
high_texture_plants ~ 0.0579  0.0581  0.0687  0.0653 04689 04705 04081  0.4404 03618 04054 03895  0.3825
poster_pillar_1 0.0653  0.0623  0.0726  0.0641 03132 03121 03340  0.3455 05532 05720  0.5144  0.5455
poster_pillar 2 0.0638  0.0605  0.0644  0.0532 03569 03814 03881 04119 0.5968  0.6059  0.5643  0.5737
reflective_materials ~ 0.0506  0.0517  0.0566  0.0528 04621 04705 04779  0.5032 04235 04655 04254  0.4493
slow_and_fast.desk ~ 0.0701  0.0648  0.0620  0.0699 04503 04584 04805  0.4850 04565 04903 04200 04321
slow_hand 0.0824  0.0667 0.0736  0.0614 04123 04246 04380  0.4647 0.5480  0.5651 04694  0.4937
still_life 0.0429  0.0419  0.0486  0.0469 0.5434 05413 05376 0.5470 03924 04400 04187 04515

Mean 0.0637 0.0629  0.0696  0.0611 0.4559 0.4561 0.4444  0.4825 0.4744 0.5106  0.4732  0.4740
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(a) ECD dataset. (b) HQF dataset.

Figure 3: Additional qualitative comparison of our FlowNet architectures with the state-of-the-art EV-FlowNet [2] on se-
quences from the ECD [1] and HQF [2] dataset.
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Figure 4: Additional qualitative comparison of our ReconNet architectures with the state-of-the-art E2VID+ and FireNet+
[2] on sequences from the ECD [1] dataset. Local histogram equalization not used for this comparison.
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Figure 5: Additional qualitative comparison of our ReconNet architectures with the state-of-the-art E2VID+ and FireNet+
[2] on sequences from the HQF [2] dataset. Local histogram equalization not used for this comparison.
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Figure 6: Additional qualitative results on sequences from Prophesee’s high-resolution automotive dataset [5].



