
A. Supplementary Material
A.1. Release

Codes, training details, and the downloadable link for trained
models are available at https://github.com/deu30303/
RUC.

A.2. Training Details
Our model employed the ResNet18 [18] architecture follow-

ing other baselines [17, 22, 42]. Before retraining, note that we
randomly initialize the final fully connected layer and replace the
backbone network with a newly pretrained one from an unsuper-
vised embedding learning algorithm as done in SimCLR [9]. This
random re-initialization process helps avoid the model from falling
into the same local optimum. The initial confidence threshold τ1
was set as 0.99, and the number of neighbors k to divide the clean
and noise samples was set to 100. The threshold τ2 for refurbish-
ing started from 0.9 and increased by 0.02 in every 40 epochs. The
label smoothing parameter ε was set to 0.5. The initial learning
rate was set as 0.01, which decays smoothly by cosine annealing.
The model was trained for 200 epochs using SGD with a momen-
tum of 0.9, a weight decay of 0.0005. The batch size was 100 for
STL-10 and 200 for CIFAR-10 and CIFAR-20. We chose λu as 25,
50, 100 for CIFAR-10, STL-10 and CIFAR-20. The wb value was
calculated by applying min-max normalization to the confidence
value of the counter network fθ(c) . Random crop and horizontal
flip were used as a weak augmentation, which does not deform
images’ original forms. RandAugment [10] was used as a strong
augmentation. We report all transformation operations for strong
augmentation strategies in Table 5. The number of transforma-
tions and magnitude for all the transformations in RandAugment
was set to 2.

Transformation Parameter Range

AutoContrast - -
Equalize - -
Identity - -
Brightness B [0.01, 0.99]
Color C [0.01, 0.99]
Contrast C [0.01, 0.99]
Posterize B [1, 8]
Rotate θ [-45, 45]
Sharpness S [0.01, 0.99]
Shear X, Y R [-0.3, 0.3]
Solarize T [0, 256]
Translate X, Y λ [-0.3, 0.3]

Table 5: List of transformations used in RandAugment

To evaluate class assignment, the Hungarian method [25]
was used to map the best bijection permutation between the
predictions and ground-truth. We also note that the computational
cost of RUC is not a huge burden. It took less than 12 hours to
run 200 epochs with 4 TITAN Xp processors for all datasets.

A.3. Sampling strategy analysis.
We evaluate the quality of the clean set generated from three

sampling strategies (See Table 6). Overall, precision was the high-

est for the hybrid strategy, whereas recall was the highest for the
metric-based strategy. We also tested the co-refurbish accuracy
over the epochs. Figure 8 displays the change of precision, recall,
and the F1-score using confidence-based sampling on the STL-10
dataset. The model’s precision drops slightly as the number of
epochs increases, but the recall increases significantly. The F1-
score, which shows the overall sampling accuracy of the clean set,
increased about 5% over 200 epochs. It can be interpreted a higher
rate of true-positive cases than the false-positive cases in the refur-
bished samples, which means that the model could successfully
correct the misclassified unclean samples. Overall, we find the
current hybrid selection strategy can distinguish clean sets rela-
tively well since the selected samples benefit from both strategies’
merits. This strategy, however, cannot always achieve the best per-
formance. Further development of the selection strategy will help
increase the proposed RUC model.

Figure 8: Changes of sampling accuracy across each epoch
on our model

Strategy
CIFAR-10 CIFAR-20 STL-10

C M H C M H C M H

Precision 92.6 91.6 93.7 59.5 59.0 63.6 93.0 87.6 94.2
Recall 93.5 93.2 89.3 83.1 88.5 77.4 79.4 94.4 78.3
F1 Score 93.0 92.4 91.4 69.3 70.8 69.8 85.7 90.9 85.5

Table 6: Quality of the clean set (C : Confidence, M : Met-
ric, H : Hybrid)

A.4. Hyper-parameters of Sampling Strategies
We investigate the effect of hyper-parameters from two sam-

pling strategies: τ1 and k. τ1 is the threshold for selecting clean
samples in the confidence-based strategy, and k is the number of
neighbors for the kNN classifier in the metric-based strategy. Fig-
ure 9 summarizes the effect of each hyper-parameter. In the case
of τ1, the final accuracy reaches the highest at τ1 = 0.99 and
starts to decrease. Small τ1 extracts clean samples with higher
recall and lower precision, while large τ1 extracts clean samples
with higher precision and lower recall. Hence, balancing between
the precision and recall through appropriate τ1 can lead to bet-
ter performance. Meanwhile, the number of nearest neighbors k
does not significantly affect the final accuracy. Given k within the
reasonable range, our model consistently produces results of high
performance.

https://github.com/deu30303/RUC
https://github.com/deu30303/RUC

(a) Effect of τ1 (b) Effect of k

Figure 9: Analysis of the accuracy on the STL-10 dataset
across two hyper-parameters: (a) τ1 from the confidence-
based strategy and (b) k from the metric-based strategy.

For remaining hyper-parameters (λu, ε, τ2), our model resorted
to a standard hyper-parameter setting that is commonly used in
practice. For example, we set λU following earlier works [5, 27],
choose ε = 0.5 as the mean of Uniform(0, 1), and choose τ2 to
be a reasonably high value, similar to τ1. Empirically, we find the
model is oblivious to these parameters (see Table 7).

λu 25 50 100

STL-10 86.20 86.7 85.74
CIFAR-10 90.3 90.07 89.21
CIFAR-20 53.00 53.05 53.50

ε 0.4 0.5 0.6

CIFAR-10 90.31 90.3 90.27

τ2 0.85 0.9 0.95

CIFAR-10 90.28 90.3 90.28

Table 7: Hyper-parameter analyses (λu, ε, τ2)

A.5. Additional Analysis for RUC on TSUC

Figure 10: Confidence distribution for noise sample
on STL-10 with the base model TSUC.

Many recent unsupervised clustering algorithms are subject
to overconfident results because of their entropy-based balanc-
ing [17, 42]. If a model is overconfident to noisy samples, separat-
ing the clean set and the unclean set becomes challenging, which
can induce the overall performance degradation. We evaluated the
calibration effect of RUC on top of TSUC in Figure 10. TSUC’s
confidence is highly concentrated near 1, while our model’s confi-
dence is widely distributed. We also report the degree of calibra-
tion quality using the Expected Calibration Error (ECE) [13]:

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)|, (21)

where n is the number of data points, Bm is the m-th group from
equally spaced buckets based on the model confidence over the
data points; acc(Bm) and conf(Bm) are the average accuracy
and confidence over Bm respectively. TSUC’s high ECE im-
plies that TSUC is more overconfident than SCAN. Lower ECE
of TSUC + RUC case in Figure 10 implies that our add-on pro-
cess led to better calibrations.

We also evaluated quality of the clean set from TSUC under
three sampling strategies. The results are shown in Table 8. Over-
all, the precision is the highest for the hybrid strategy, whereas
the recall is the highest for the metric-based strategy, as same as
the SCAN’s results. Meanwhile, confidence-based strategies in
TSUC showed low precision, which implies that TSUC is not well-
calibrated and highly overconfident.

Strategy
CIFAR-10 CIFAR-20 STL-10

C M H C M H C M H

Precision 80.9 84.2 82.7 40.9 41.8 43.0 68.2 69.0 71.4
Recall 69.9 96.4 68.0 47.4 90.3 45.5 78.3 79.4 76.2
F1 Score 69.5 89.9 74.6 43.9 85.5 44.2 72.9 73.8 73.7

Table 8: Quality of the clean set regards to sampling strate-
gies (C : Confidence, M : Metric, H : Hybrid)

A.6. Further Discussion on Co-Training

Figure 11: Changes of clustering accuracy across
each epoch on CIFAR-20 with the base model TSUC

Our model architecture introduces a co-training module where
the two networks exchange their guesses for teaching each other
via co-refinement. Due to the different learning abilities in two
networks, disagreements from networks help filter out corrupted
labels, which contributes to a substantial performance increase in
unsupervised classification. Besides, the co-training structure pro-
vides extra stability in the training process.

Figure 11 compares our model and the same model without co-
training based on classification accuracy across the training epoch.
The model without co-training shows large fluctuations in accu-
racy; in contrast, the full model’s accuracy remains stable and con-
sistent throughout epochs. We speculate this extra stability comes
from our model’s ensemble architecture and the effect of loss cor-
rection. Corrected labels via ensemble predictions bring additional
label smoothing. Therefore, it may reduce the negative training
signals from unclean samples, which can lead to abrupt updates
on the model parameters.

A.7. Further Details on Adversarial Robustness
Empirical risk minimization (ERM), a learning principle which

aims to minimize the averaged error over the sampled training
data (i.e., empirical risk), has shown remarkable success in finding
models with small population risk (i.e., true risk) in the supervised
setting [43]. However, ERM-based training is also known to lead
the model to memorize the entire training data and often does not
guarantee to be robust on adversarial noise [31, 56]. This weakness
can also be inherited from several unsupervised clustering algo-
rithms that introduce the ERM principle with their pseudo-labels,
like SCAN [42].

Adding RUC to the existing clustering models improves ro-
bustness against adversarial noise. To demonstrate this, we
conducted an experiment using adversarial perturbations of the
FGSM [12] and BIM [26] attacks, whose directions are aligned
with the gradient of the loss surface of given samples. The details
of each attack are as follows:
Fast Gradient Sign Method (FGSM) FGSM crafts adver-
sarial perturbations by calculating the gradients of the loss func-
tion J(θ,x,y) with respect to the input variables. The input im-
age is perturbed by magnitude εwith the direction aligned with the
computed gradients (Eq. (22)).

xadv = x + ε · sgn(∇xJ(θ,x,y)) (22)

Basic Iterative Method (BIM) BIM is an iterative version
of FGSM attack, which generates FGSM based adversarial noise

with small ε and applies the noise many times in a recursive way
(Eq. (24)).

xadv0 = x (23)

xadvi = clipx,ε(x
adv
i−1 + ε · sgn(∇xadv

i−1
J(θ,xadvi−1,y))) (24)

Clip function maintains the magnitude of noise below ε by clip-
ping. For BIM attack experiments, we use five iterations with an
equal step size.

Figure 7 in our main manuscript compares the model’s ability
to handle adversarial attacks, which confirms that adding RUC
helps maintain the model accuracy better for both attack types.
An investigation could guide us that this improved robustness is
mainly due to the label smoothing techniques, which regularize
the model to avoid overconfident results and reduce the amplitude
of adversarial gradients with smoothed labels [34, 47].

A.8. Additional Examples for Qualitative Analysis
Figure 12 shows additional examples for the visual interpreta-

tion from RUC on top of SCAN via the Grad-CAM algorithm [38].
Blue framed images are the randomly chosen success cases from
STL-10, and the red-framed images are example failure cases.
Overall, the network trained with our model can extract key fea-
tures from the images. Even though the model sometimes fails,
most of the failures occurred between visually similar classes (e.g.,
horse-deer, cat-dog, truck-car, dog-deer).

Figure 12: Additional example of successes and failures from STL-10 where the highlighted part indicates how the model
interprets class traits based on the Grad-CAM method (Blue frame: success case, Red frame: failure case).

