
A. Supplementary Materials
A.1. Additional reconstruction results

In Figures 2 and 8 we show a large collection of additional
recontruction images on the CelebA-HQ [8] and LSUN Bed-
room [14] datasets.

A.2. Smoothness of latent space

In this section we analyse the smoothness of the latent
space learnt by DC-VAE. In Figure 5 we show additional
high resolution (512× 512) CelebA-HQ [8] images gener-
ated by an evenly spaced linear blending between two latent
vectors. In Figure 7 of the main paper we show that DC-VAE
is able to perform meaningful attribute editing on images
while retaining the original identity. To perform image edit-
ing, we first need to compute the direction vector in the latent
space that correspond to a desired attribute (e.g. has glasses,
has blonde hair, is a woman, has facial hair). We compute
these attribute direction vectors by selecting 20 images that
have the attribute and 20 images that do not have the attribute,
obtaining the corresponding pairs of 20 latent vectors, and
calculating the difference of the mean. The results in Figure
7 of the main paper show that these direction vectors can
be added to a latent vector to add a diverse combination of
desired image attributes while retaining the original identity
of the individual.

A.3. Effect of negative samples

In this section we analyse the effect of varying the num-
ber of negative samples used for contrastive learning. Figure
1 shows the reconstruction error on the CIFAR-10 [9] test
set as the negative samples is varied. We observe that a
higher number of negative samples results in better recon-
struction. We choose 8096 for all of our experiments because
of memory constraints.
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Figure 1: Pixel reconstruction error on CIFAR-10 [9] test set for
varying number of negative samples

A.4. Dataset details

CIFAR-10 comprises 50,000 training images and 10,000
test images with a spatial resolution of 32 × 32. STL-10
is a similar dataset that contains 5,000 training images and
100,000 unlabeled images at 96× 96 resolution. We follow
the procedure in AutoGAN [4] and resize the STL-10 images
to 32 × 32. The CelebA dataset has 162,770 training im-
ages and 19,962 testing images, CelebA-HQ contains 30,000
images of size 1024 × 1024, and LSUN Bedroom has ap-
proximately 3M images. For CelebA-HQ we split the dataset
into 29,000 training images and 1,000 validation images fol-
lowing the method in [6]. We resize all images progressively
in these three datasets from (4 × 4) to (512 × 512) for the
progressive training.

A.5. Network architecture diagrams

In Figure 9 we show the detailed network architecture
of DC-VAE for input resolutions of 32 × 32. Note that
the comparison results shown in Figure 3 and Table 1 of
the main paper, for VAE, VAE/GAN, VAE w/o GAN, and
our proposed DC-VAE are all based on the same network
architecture (shown in Figure 9 here), for a fair comparison.

The network architectures shown in Figure 9 are adapted
closely from the networks discovered by [4] through Neural
Architecture Search. The DC-VAE developed in our paper
is not tied to any particular CNN architecture. We choose
the AutoGAN architecture [4] to start with a strong base-
line. The decoder in Figure 9 matches the generator in [4].
The encoder is built by modifying the output shape of the
final linear layer in the discriminator of AutoGAN [4] to
match the latent dimension and adding spectral normaliza-
tion. The discriminator is used both for classifying real/fake
images, and contrastive learning. For each layer we choose,
we first apply 1x1 convolution and a linear layer, and then
use this feature as an input to the contrastive module. For
experiments at 32× 32, we pick two different positions: the
output of second residual conv block (lower level) and the
output of the first linear layer (higher level). For experiments
on higher resolution datasets we use a Progressive GAN
[8] Generator and Discriminator as our backbone and apply
similar modifications as described above.

A.6. Further details about the representation learning
experiments

As seen in Table 6 of the main paper, we show the rep-
resentation capability of DC-VAE following the procedure
outlined in [2]. We train our model on the MNIST dataset
[10] and measure the transferability though a classification
task on the latent embedding vector. Specifically, we first pre-
train the DC-VAE model on the training split of the MNIST
dataset. Following that we freeze the DC-VAE model and
train a linear classifier that takes latent embedding vector as
the input and predicts the class label of the original image.



Figure 2: Additional CelebA-HQ [8] reconstruction images (resolution 512× 512) generated by DC-VAE (ours)
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Figure 3: Visualization of the effect of adding each instance level and set level objectives. Table 1 and Figure 3 (in the main paper) contain
FID [5] results and qualitative comparisons on the CIFAR-10 [9] that correspond to these settings.

(a) STL-10 Reconstructions generated by DC-VAE (b) STL-10 Samples generated by DC-VAE

Figure 4: DC-VAE reconstruction (a) and synthesis results (b) on STL-10 [1] images (resolution 32× 32). In (a) the top two rows are input
images and the bottom two rows are the corresponding reconstruction images.

A.7. Evaluation details

In Tables 1 and 8 of the main paper the perceptual distance
is computed as the average MSE distance of the features
extracted by a pretrained VGG-16 network. We borrow from
[7] and use the activation of the relu4_3 layer. For computing
the FID scores we follow the standard practice ([6], [11]) and
use 50,000 generated images. In Table 4 of the main paper
we use the 256× 256 version of DC-VAE model trained on
CelebA-HQ [8] for a fair comparison with other methods
which are trained at the same resolution.

Table 1: Comparison on CIFAR-10 with a DCGAN [12]
backbone. *Code and saved models are not provided for this
method.

Method FID Sampling↓ Perceptual Distance ↓

ALI / BiGAN 86.37 98.47
VEEGAN* 95.2 -
DC-VAE 78.06 80.99



Table 2: Comparison on CIFAR-10 with AutoGAN [4] backbone
(all methods use multi-scale learning with the same intermediate
layers). Autoencoder baseline is trained to minimize L2 loss on a
pretrained VGG16 feature space.

Method FID Sampling↓ Perceptual Distance↓

Autoencoder (without KL) N/A 40.2
GAN 14.2 N/A
VAE/GAN (L2; feature space) 39.8 57.2
VAE/GAN (L1; feature space) 34.8 93.1
VAE/GAN (L2; pixel space) 33.4 63.4
VAE/GAN (L1; pixel space) 29.5 57.7
DC-VAE (ours) 17.9 52.9

A.8. Further comparison on CIFAR-10

We also trained VAE-GAN with L1/L2 loss in both pixel
and feature spaces. We discover that our proposed model is
consistently better than these baselines. Results are shown
in Table 2.

A.9. Training with a weaker backbone

To make a fair comparison with [3] and [13], we trained
our model using [12]. Results are shown in table 1. We
discover that even when we control the capability of our
model backbone, our method improves both FID score and
perceptual distance.



Figure 5: Additional latent space interpolations on CelebA-HQ [8] (resolution 512× 512)



Figure 6: Latent Mixing results on CelebA-HQ [8]. Each combined image in the grid is generated by replacing an arbitrary
subset of Source A latent with the corresponding Source B latent.
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Figure 7: Additional image editing on CelebA-HQ [8] reconstruction images (resolution 512× 512)



Figure 8: Additional LSUN Bedroom [14] reconstruction images (resolution 128× 128)
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Figure 9: Network architecture of DC-VAE for resolution 32× 32 for CIFAR-10 [9] and STL-10 [1]. (a) is the Encoder. (b) is the Decoder.
(c) is the Discriminator.
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