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A. Additional Results
A.1. Varying noise levels and number of cameras in

SLAM graphs
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Figure 1. Runtime [s] (in log-scale) for SLAM camera graphs with
dG = 0.2. (a) Varying σ in [0.1, 0.5] rad. and n = 1000. (b)
Varying n in [1000, 1800] with σ = 0.1 rad. See Fig. 3 in the
main text for the description of the legend.

A.2. Quantitative results for the SfM large scale
real-world dataset (Error in ◦)

Table 1 provides the mean, median and maximum angu-
lar errors (in ◦) for the SfM large scale real-world data of
Table 2 in the main text.

B. Further details
B.1. Conditions on the noise level for the strong

duality of Eq. (5)

For the following rotation averaging problem (Eq. (5) in
the main text)

min
R1,...,Rn∈SO(3)

∑
(i,j)∈E

dchordal(RjR
T
i , R̃ij)

2, (1)

we present a bound on the angular residual errors

αij = d∠(R
∗
jR
∗
i
T , R̃ij) (2)

*equal contribution

such that its strong duality holds.
The main result of [Theorem 4.1, 11] is the proof of the

strong duality of Problem (1) if

|αij | ≤ αmax ∀(i, j) ∈ E , (3)

where

αmax = 2arcsin

√1

4
+
λ2(LG)

2dmax
− 1

2

. (4)

λ2(LG) and dmax in (4) are related to the structure of the
camera graph. More precisely, αmax depends on the con-
nectivity of the camera graph represented by its Fiedler
value λ2(LG) (the second smallest eigenvalue of its Lapla-
cian LG), and its maximal vertex degree dmax (c.f. to [11]
and [12] for more details).

From the dependency of αmax on the structure of the
camera graph, it can be established that the most favourable
case (admitting the largest residuals) is the complete graph
for which αmax ≈ 42.9◦. The other extreme case is a cycle
with αmax = π/n, which induces a low angular bound for
a large number of cameras although [11] suggested that this
bound was “quite conservative”.

Although conditions were presented in terms of
the angular distance, we remark that a chordal bound
can also be established for the chordal residuals
{dchordal(R

∗
jR
∗
i
T , R̃ij)} of Problem 1 as both distances are

related [16]:

dchordal(R,S) = 2
√
2 sin

(
d∠(R,S)

2

)
. (5)

B.2. Zero duality gap between (P) and (DD)

Eriksson et al. [11] have proven that under mild condi-
tions on the noise level (see Sec. B.1), there is zero duality
gap between their primal problem (Porig) and their SDP re-
laxation (DDorig). Since we defined our primal problem (P)
and its SDP relaxation (DD) following a different conven-
tion for the relative rotation definition than [11], here we
show that our (P) and (DD) problems are equivalent to their



Dataset characteristics Error [◦]
Name n m dG Mean Median Max

Init. RCD Init. RCD Init. RCD
Alcatraz Tower 172 14706 1.00 4.65 0.63 4.16 0.63 20.57 0.63
Doge Palace 241 19753 0.68 5.95 0.56 5.18 0.52 23.07 1.82
King’s College 328 41995 0.78 6.98 0.39 4.89 0.36 32.99 0.83
Alcatraz Garden 419 51635 0.59 7.79 0.92 6.62 0.92 25.65 1.79
Linkoping 538 34462 0.24 7.42 0.63 6.90 0.58 25.15 2.63
UWO 692 80301 0.33 7.20 0.55 6.42 0.52 24.43 2.19
Orebro Castle 761 116589 0.40 6.66 0.52 5.55 0.50 27.30 1.33
Spilled Blood 781 117814 0.39 11.41 6.81 7.61 6.46 42.82 12.35
Lund Cathedral 1207 177289 0.24 8.05 0.40 7.52 0.34 27.12 3.52
San Marco 1498 757037 0.67 5.03 0.22 4.45 0.21 26.59 0.94

Table 1. Quantitative results for the SfM large scale real-world dataset [25]. We provide the mean, median, and maximum angular errors
of the initial solution (Init.) and RCD (in ◦).

counterparts in [11]. Hence the zero duality gap extends to
them.

We defined our primal problem as follows. By rewriting
the chordal distance using trace, (1) becomes (Eq. (8) in the
main text)

min
R1,...,Rn∈SO(3)

−
∑

(i,j)∈E

tr(RT
j R̃ijRi). (6)

By the transpose invariance of the trace, (6) is equivalent to

min
R1,...,Rn∈SO(3)

−
∑

(i,j)∈E

tr(RT
i R̃

T
ijRj). (7)

Our primal definition comes from rewriting (6) more com-
pactly as

min
R∈SO(3)n

− tr(RT R̃R) (P)

using matrix notations, where

R =
[
RT

1 R
T
2 · · ·RT

n

]T ∈ SO(3)n (8)

contains the target variables, and R̃ encodes the transposes
of the relative rotations. R̃ is then defined as

R̃ =


03 a12R

T
12 · · · a1nR

T
1n

a21R
T
21 03 · · · a2nR

T
2n

... 03
. . .

...
an1R

T
n2 an2R

T
n2 · · · 03

 , (9)

where aij are the elements of the adjacency matrix A of G.
We now show that (P) is equivalent to the primal in [11],

which is defined as (Eq. (11) in [11])

min
Q∈SO(3)n

− tr(QQ̃QT ), (Porig)

where Q is a “row” vector containing rotation matrices

Q = [Q1, . . . , Qn] , (10)

and Q̃ encodes the relative measurements as

Q̃ =


03 a12Q12 · · · a1nQ1n

a21Q21 03 · · · a2nQ2n

... 03
. . .

...
an1Qn2 an2Qn2 · · · 03

 . (11)

However, relative rotationsQij in [11] are defined such that
(Eq. (4) in [11])

Qij = QT
i Qj . (12)

Contrast to our definition from Eq. (1) in the main text
where we define relative rotations in the ideal case as

Rij = RjR
T
i . (13)

The following equivalences can then be established:

Ri = QT
i and Rij = QT

ij , (14)

which implies that Q = RT , Q̃ = R̃, and therefore (P) is
equivalent to (Porig) in the sense that their objective values
are the same and their optimisers are related by a translation.

Similarly, our SDP relaxation

min
Y ∈R3n×3n

− tr(R̃Y ) (DD)

s.t. Yi,i = I3, i = 1, . . . , n. (15a)
Y � 0, (15b)

is equivalent to its counterpart in [11]. In effect, they are the
same as matrices encoding rotations are the same for both
problems (Q̃ = R̃).



B.3. Validity of Algorithm 1 as equivalent to BCD
in Eriksson et al. [11]

Here we show that BCD as presented in Algorithm 1 in
the main text is equivalent to the original BCD algorithm for
rotation averaging proposed in [11]. To facilitate presenta-
tion, we call BCD-Ours to Algorithm 1 in the main text and
BCD-Orig to Algorithm 1 in [11].

The improvement of BCD-Ours over BCD-Orig is that
instead of creating a temporary large square matrix

B =

[
Y

(t)
(1:k−1);(1:k−1) Y

(t)
(1:k−1);(k+1:n)

Y
(t)
(k+1:n);(1:k−1) Y

(t)
(k+1:n);(k+1:n)

]
(16)

as in BCD-Orig, BCD-Ours creates a temporary vector
which allows to operates directly on Y (t) as we will show
next.

Note that B are the elements in Y (t) that are kept con-
stant during the current iteration in BCD-Orig and BCD-
Ours. On the other hand, the updated components for Y (t)

in BCD-Orig are obtained from the optimiserX∗ of an SDP
problem (Problem (26) in the main text) which has the fol-
lowing explicit solution:

X∗ = BC
[(
CTBC

) 1
2

]†
, (17)

where C ∈ R3(n−1)×3 is the k-th column of R̃ without its
k-th row, i.e.,

C =

[
R̃

(t)
(1:k−1);(k:k)

R̃
(t)
(k+1:n);(k:k)

]
. (18)

Instead of computing the updates from (17), BCD-Ours
solves

S = Z
[(
WTZ

) 1
2

]†
, (19)

where W ∈ R3n×3 is the k-th column of R̃, i.e.,

W = R̃:,k , (20)

and

Z = Y (t)W (21)

is a temporary vector.
We will show next that X∗ es equal to S without its k-

th element. Since BCD-Ours ignores the k-th element of
S during the update (Line 7 in BCD-Ours), BCD-Ours and
BCD-Orig produce the same output.

Note first that the pseudo-inverse parts of (17) and (19)
are the same since

CTBC =WTZ (22)

as the k-th element in W is zero (W is the k-th column of
R̃ which has diagonal elements equal to 03). Similarly BC
is equal to Z if removing the k-th element of Z. Hence (19)
produces X∗ after removing the k-th element of S.


