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1. Method

Here we further explain the method section of the main
paper in detail. We initialize the parameters of the SMPL-
X [12] model with a multi-view fitting approach, followed
by a refinement step that fits SMPL-X to the 3D scan as
show in Fig. 1.

1.1. Multi-view Initialization.

The scans contain arbitrary poses, varied clothing, and
people holding objects. This makes the automatic fitting of
SMPL-X a challenge without a good initialization. We first
center S and render images of it from C pre-defined vir-
tual cameras. 2D landmarks are detected in each rendered
image with [3] and we initialize the parameters with an ap-
proach that extends the single-view SMPLify-X fitting [12]
to incorporate landmarks in multiview images.

SMPLify-X [12] takes one color image as input and opti-
mizes the pose θ, shape β and facial expression ψ of SMPL-
X to match the observed 2D landmarks by minimizing the
following objective:

E(β, θ, ψ) = EJ + Ereg, (1)
Ereg = λθbEθb + λθhEθh + λαEα +

λβEβ + λEEE + λCEC , (2)

where EJ is the data term that penalizes differences be-
tween projected and observed landmarks, and Ereg includes
several regularization terms: Eα(θb) penalizes strong
bending of elbows and knees, while EC prevents mesh-
intersections. Eθb(θb), Eθh(θh), Eβ(β), and EE(ψ) are L2

priors on the body pose, hand pose, body shape and facial
expressions. λ’s denote weights for each respective term.
We adapt Eq. 2 to take multi-view data with known camera
parameters for each camera c: Emv = Ereg+

∑C
c=1E

c
J . Un-

like in [12] where one needs to estimate camera translation
first, here the intrinsics and extrinsics are given.

1.2. 2D+3D Refinement

To get the skin and cloth vertices from scan, we use
segmentation masks provided by Renderpeople to group
scan points into skin, clothing (including shoes), and the
rest (hair and objects). Since we do not have segmenta-
tion masks from other vendors, we generate them using
Graphonomy [6]. Graphonomy provides human parts seg-
mentation given an image with labels for cloth as well as
body parts.

Skin-Cloth Segmentation. For each rendered multi-
view image of a scan, Graphonomy outputs segmentation
masks for different body parts and types of clothing. We
group these into 3 labels: skin, cloth and other. Given the
known cameras, we project visible vertices into the images
and give them the corresponding label. Aggregating labels
across all views gives a us a probability of each vertex be-
ing skin, clothing, or other. For Renderpeople scans, the
probability is either 1 or 0 as we have segmentation masks.
Similar to [16], we define energy terms Eskin and Ecloth for
skin and clothing scan vertices, respectively.

Here we explain in detail, the two optimization terms,
Eskin and Ecloth used in 2D+3D refinement. Please refer to
the main paper for the full equation.
Skin term. For each scan vertex s ∈ S we find the point
on the closest model triangle. We minimize the point-
to-surface distance between them weighted by probability
p ∈ Pskin. Here Pskin is the probability of the vertex s
belonging to skin calculated using Graphonomy [6].

Eskin(β, θ, ψ) =
∑

s∈S,p∈Pskin

ρ (p · dist(s,M(β, θ, ψ))) ,

(3)

where dist(·) represents the distance of the closest point on
the modelM(β, θ, ψ) surface from the scan vertex s. ρ(·) is
Geman-McClure robust error function [5] that prevents out-
liers from contributing too much in the energy. Of course,
we start with the initialization from Sec. 1.1.



Figure 1. SMPL-X fitting to scans. Keypoints and body part segmentation across multiple rendered views are generated using OpenPose
and Graphonomy. Multiview SMPLify-X initializes the model in proper pose. Shape is further refined using 2D+3D refinement (see text).

Clothing term. The goal of Ecloth is to prevent clothing
scan points from penetrating inside the model while keeping
the model close to the scan, so that the body does not shrink.

Each scan point is further classified into two categories:
points penetrating the body model SP and points outside the
body model SO. We get the probability of each scan vertex
being cloth Pcloth from Graphonomy [6]. Pcp and Pco are
the corresponding cloth probability values for SP and SO
taken from PCloth. For si ∈ SP we penalize the distance
with weight λ, while for si ∈ SO we use again Geman-
McClure function to accommodate loose clothes like skirts,
saris, bath robes, etc. We weight the dist(·) with the corre-
sponding probability values Pcp and Pco. Specifically:

Ecloth(β, θ;ψ) =∑
p∈Pco,s∈SO

ρ (p · dist(s,M(β, θ, ψ)))

+λ(
∑

p∈Pcp,s∈SP

p · dist(s,M(β, θ, ψ))), (4)

where we do not optimize facial expression, ψ, because it
is not covered by clothing and where dist(·) and ρ are the
same as in Eq. 3.

Since the initialization in Sec. 1.1 is already close, the
classification of SP and SO can be approximated as follows.
Each vertex si ∈ S has a point mi on the nearest triangle
of the model with a corresponding normal ni. We define a
displacement vector di = mi − si and identify SP if the
inner product of di and ni is greater than 0, otherwise we
consider it SO.

1.3. Child scans fitting

As described in Sec. 3.2 of the main paper, we fit 257
children scans by using a template that is an interpolation
of adult SMPL-X template and SMIL infant template [7].

Figure 2. SMIL-X and adult male SMPL-X template interpolation.

Fig. 2 shows how varying interpolation coefficient gives us
approximate template from different age group.

2. AGORA
AGORA Statistics. We provide the dataset distribution
across various attributes i.e. age, ethnicity and gender for
AGORA ground truth scans in Fig. 3. AGORA has evenly
distributed gender and a varied range of age and ethnicity.
To create this distribution, we use gender, age and ethnicity
information provided by Renderpeople [2]. For other ven-
dors since no age and ethnicity information was given we
label them with the help of Amazon Mechanical Turks [1].
We recruit 5 different subjects with > 5000 HITs approved
and an approval rate >97%. We ask them to classify the
rendered image of the scan into predefined categories of eth-
nicity and age (including Unknown). If there is a majority
vote, we label the scan with the respective category. If there
is a tie, we resolve it by ourselves by selecting the best esti-
mate or by selecting Unknown. For others, we marked them
Unknown. We label all the scans with gender ourselves.
AGORA Dataset. Fig. 6 provides more examples of our



Figure 3. Breakdown of AGORA dataset in ethnicity, age, and gender.

Figure 4. Error in varied orientations relative to the camera. 0◦

corresponds to facing the camera. Evaluated on BFH subset of
AGORA for 22 SMPL-X and 24 SMPL joints.

dataset. From left to right we show the RGB image, the
RGB image with ground truth SMPL-X fits and segmenta-
tion masks. The 3D scenes (row 1-4) lead to challenging
environmental occlusion, as can be seen in the segmenta-
tion masks on the right. Row 5 shows a example from the
easy-split experiment described in Sec. 3.2. We also render
individual subject masks as though there is no occlusion.
See Fig. 5 for examples. We use these masks to determine
how much a person is occluded.

3. Additional Analysis on Baseline Experiment
Here we provide details for the Evaluation Protocol as

well as additional analysis of the baselines.

3.1. Evaluation Protocol.

In the following we describe our evaluation protocol in
detail. A less detailed description with visualization can be
found in the main paper in Section 4.3. We evaluate the fol-
lowing methods: ExPose [4], FrankMocap [13], SMPLify-
X [12], HMR [10], SPIN [11], EFT [9], and CenterHMR
[14]. which collectively provide a good picture of the cur-
rent SOTA. Our protocol can be split into four parts: 1) De-
tection, 2) 3D pose and shape estimation, 3) matching of

predictions to ground truth and 4) computing errors. In the
following we will explain each component.
Detection. All the methods we evaluate require the per-
son to first be localized. To obtain person detections we run
OpenPose [3] on the input image. OpenPose requires a large
number of settings. To select these settings we draw inspi-
ration from the maximum accuracy setting as reported on
the OpenPose GitHub page1. However, these settings have
huge memory requirements on the GPU. Thus, we mod-
ify the settings such that OpenPose can run on a common
GPU with 12 GB of memory. We end up with the follow-
ing settings: We scale the larger side of the input images to
272 pixels while keeping the aspect ratio fixed. We use two
scale processing for the body keypoints with a scale gap of
0.25. We run the face detection network with default set-
tings. Note that only SMPLify-X makes use of hand and
face detections, however, we use the same settings for all
the evaluated methods to reduce influence of the keypoint
detection on the results. For CenterHMR [14] we directly
use the entire image as input without any cropping.
3D pose and shape estimation. For each OpenPose de-
tection we run all the methods. All methods in our ex-
periment except [14] require either 2D keypoints or tight
crops around the detected person as input. For ExPose [4],
FrankMocap [13],HMR [10] and SPIN [11] we use their
demo code to generate crops from OpenPose detections.
SMPLify-X [12] operates directly on OpenPose keypoints
and no pre-processing is needed. EFT considers both
the image feature of the crop and keypoints. For Cen-
terHMR [14] we directly use the entire image as input for
3D pose and shape estimation.
Matching predictions to ground truth. Let M be the set
of predicted meshes and N be the set of ground truth hu-
mans. To match the predictions of the methods to ground
truth, we project the 3D keypoints of the estimated SMPL-
body to the image plane. To this end, the camera parameters
as assumed or estimated by the method are used. Similarly,
we project the ground truth 3D keypoint to the image plane
using the ground truth camera parameters. We compute the
2D joint error for all combinations of m ∈ M and n ∈ N

1https://github.com/CMU-Perceptual-Computing-Lab/
openpose



Figure 5. Person segmentation masks. Left: color images. Middle: full masks. Right: individual masks rendered with no occlusions.

and match them based on minimal 2D keypoint error.
False positives and false negatives. The predictions are
often noisy leading to false positives and false negatives, as
shown in Fig. 3 of the main paper. It is crucial to detect false
positives to avoid that a false positive is incorrectly matched
to ground truth, resulting in large errors, which might distort
the results. To detect false positives we construct 2D axis-
aligned bounding boxes (AABB) for each prediction and
ground truth based on the 2D keypoints. Before matching
a prediction with ground truth we compute the intersection
over union (IoU) for this pair. If IoU < τ and no other
possible match exists for a given prediction it is considered
a false positive. We choose our threshold τ = 0.1, such
that predictions which have a large distance in 2D are not
considered to match, but small enough to ensure that dif-
ferences in the scale of prediction and ground truth do not
lead to erroneous classification as a false positive. Finally,
each unmatched ground truth body is considered as a false
negative.
Computing errors. We compute the errors using different
metrics, as described in Section 4.2 in the main paper.

3.2. Evaluation of Methods

A qualitative comparison of different methods is shown
in Fig. 7. In Sec. 5 of the main paper we analyse the depen-
dence of errors with respect to occlusion and distance from
the center of the image. Here, we analyze the dependence
of errors on the body orientation.
Orientation. We concentrate particularly on the yaw rota-
tion with respect to the camera, and report the error in Fig. 4,
where 0◦ corresponds to facing the camera. We observe
that the error grows as the yaw angle increases, reaching the
peak around 180◦ and then decreases. This suggests that the
current 3D human-pose-and-shape methods perform worst
when subjects are not facing the camera.

From scratch training.

Models 3DPW (14 joints) 3DPW (24 joints)

MPJPE ↓ PA-MPJPE ↓ MPJPE ↓ PA-MPJPE ↓
Human3.6M [8] 311.3 162.1 286.2 178.1
[MPII+LSPet+COCO]EFT [9] 125.0 77.4 121.9 86.1
AGORA 147.4 81.0 141.3 88.8

Table 1. Training SPIN from scratch with Human3.6M vs. EFT
vs. AGORA.

In Table 1 we report results for SPIN trained from scratch
using different datasets. For AGORA training, we report
on-par PA-MPJPE compared to [MPII+LSPet+COCO]EFT
but much better results than for training from scratch
with Human3.6M [8]. These experiments suggest that the
AGORA training set is sufficiently realistic and large to sup-
port both finetuning and from-scratch training. Pre-trained
weights on AGORA will be made available for research pur-
poses.
Easy split experiment. To further show that the images
in AGORA are comparable in complexity to natural im-
ages, we create an easy test set of approximately 400 im-
ages as sanity check. Each image consists of only two peo-
ple in the easy split, potentially with some minor occlusion
(5th row of Fig. 6). Despite having two person per image
and minor occlusion, easy test set is still more challeng-
ing than 3DPW [15] because of varied lighting and com-
plex clothing. We evaluate FrankMocap [13] and ExPose
on this set and report 118.0 and 111.6mm B-MPJPE er-
ror for 22 SMPL-X joints. ExPose error is comparable to
the reported error on 3DPW in original work [4] as 93.4.
Since, FrankMocap only shows qualitative results, we can’t
compare the quantitative evaluation with original work. The
easy-split experiment along with the finetuning experiment
described in main paper suggest that our synthetic images
are on par with natural images.



Figure 6. Examples images from the AGORA dataset.
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Figure 7. Method evaluation. RGB images (row 1), FrankMocap (row 2), ExPose (row 3), CenterHMR (row 4), HMR (row 5), SMPLify-X
(row 6) and SPIN (row 7).


