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1. Additional Results

We show more top-5 retrieved results for different
queries of Ul layouts and floorplans in Figure 1, 5, 6 and 7.
In presenting these results, we randomly picked the queries
from the set of N queries (N=50 for Uls and 100 for floor-
plans) which were used to get Precision@k scores for the
baselines discussed in the main paper and also tabulated in
Table 1 there. In Figure 1, we present results using the IoU
metric, alongside retrieved results using the state-of-the-art
GCN-CNN network [2] and LayoutGMN. In Figures 5, 6, 7,
we show comparative results on only two learned methods,
viz., GCN-CNN [2], and LayoutGMN. We would also like
to point out that in the main paper (L 571), we promised to
show results on document layouts, but were unaware of the
submission policy for supplementary material (which pro-
hibits presenting results on additional datasets). We, there-
fore, skip showing results on document layouts.

2. Attention Visualizations

LayoutGMN compares two layouts structurally via
attention-based Graph Matching mechanism, in addition to
message propagation within individual graphs. The former
provides local structural correspondences, whereas the lat-
ter provides global structural prior for comparing two lay-
outs. Specifically, if there exist m semantic elements in lay-
out I; and n semantic elements in layout o, the attention-
weight matrix for matching elements in /o w.r.t elements in
1, is of size n X m, and vice-versa. These attention weights
change from layer-to-layer depending on the the structural
match. In Figure 2, we present two examples of floorplans
with attention weights visualized in all 6 layers, with layer-0
being the layer where weights are initialized prior to train-
ing. For brevity, we just present floorplan attention visual-
ization, and only show the largest attention weights, omit-
ting all other (insignificant) connections.
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3. Crowd-sourced Relevance Judgements

In the main paper, we mentioned that the Precision@k
scores [3] were obtained using crowd-annotated responses
on the relevance of the returned results for a given query.
This crowd annotation was done on Amazon Mechanical
Turk (AMT), for both, UI layouts [1] and floorplans [4].
The design of the questions plays a crucial role in validating
the performance of a network employed for retrieval task.
We, therefore, design our AMT response study on UI lay-
outs in a similar manner as carried out in Manandhar et al.
[2]. A snapshot of a question visible to turkers for tagging
structurally similar results for a given query of UI layouts
is shown in Figure 3. Such set of questions are shown for
all the baseline methods enumerated in Section 5.1 in the
main paper. For floorplans, we design our crowd-annotation
study on AMT in a similar fashion. The set of instructions
on which a user should base her relevance judgments for a
given floorplan query are shown in Figure 4.

4. Fully connected vs Adjacency Graphs

All the quantitative results presented in the main paper
are based on fully-connected graphs, for all the methods.
We observed, both quantitatively and qualitatively (Fig 6,
Table 1,2,3 in the main paper), that fully-connected graphs
are a good input representation for learning structural sim-
ilarity on layouts. We also experimented with adjacency
graphs, on both, floorplans as well as Ul layouts. As ex-
plained in the main paper, we observed that, for floorplans
(where the graph node count is small), the quality of re-
trievals improved in the case of LayoutGMN, but degraded
for GCN-CNN. A set of results for the same is shown in
Figure 5. This is mainly because GCN-CNN obtains inde-
pendent graph embeddings for each input graph and when
the graphs are built only on adjacency connections, some
amount of global structural prior is lost. On the other hand,
GMN s obtain better contextual embeddings by now match-
ing the sparsely connected adjacency graphs, as a result of
narrower search space. However, for Uls (where the graph
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Figure 1. More Results: Top-5 retrieved results for an input query based on IoU metric, GCN-CNN_Triplet [2] and LayoutGMN, on UI
designs (first two rows), followed by floorplans. These set of queries were randomly chosen, and are a part of the larger set of N queries
(N=50 for Uls and 100 for floorplans) used to get Precision@k scores via crowd-sourced relevance judgements. Also see Fig 5, 6, 7.
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Figure 2. Given a query (on the left) and its retrieved result (on the right), we show attention weights in different layers of message
propagation, leading to element correspondences, from which structural similarity is driven and partly established. Layer-0 to Layer-5
show learned attention weights in different layers of propagation. For brevity, we only show the largest weights.

node count is large), the elements are scattered all over the
layout, and no one heuristic is able to capture adjacency
relations perfectly. The quality of retrievals for both the
networks degraded when using adjacency graphs on Ul lay-
outs. A set of such results is shown in Figure 6.

5. Retrieval Stability

In the main paper, we developed a new metric, called
Overlap @k scores, to measure the stability of retrievals us-
ing different methods. This score measures the ability of
the layout similarity metric to replicate the distance field im-
plied by a query according to its top-ranked retrieval. Quan-
titative results for the same are shown in Table 2 in the main
paper. In this manuscript, we present qualitative results for
the same in Figure 7.
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Title: Tag structurally similar images for a given query.

Description:

A set of mobile User-Interface snapshots are shown below.

Specifically, a query image is shown on the left, and 10 different images are shown on the right against it.

Taking the query image as the reference, select all the images that you think are structurally similar to the given query image.

Note:

Ignore the color and content of the texts and visuals, and make a selection if the structure of the Ul images
shown on the right match that of the query image on the left.
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Figure 3. Snapshot of a question visible to turkers on Amazon Mechanical Turk (AMT) to get relevance judgments of returned results for a
given Ul layout query. Our design of this study on UI layouts is similar to the one used in the state-of-the art work on structural simialrity
by Manandhar et al. [2].

Hao Qi, and Ligang Liu. Data-driven interior plan genera-
tion for residential buildings. ACM Transactions on Graphics
(TOG), 38(6):1-12, 2019. |



Title: Tag structurally similar images for a given query.

Description:

A building floorplan is represented as an image, where the colored boxes represent different kinds of rooms.

A query image is shown on the left, and 10 different images are shown on the right against it.
Taking the query image as the reference, select all the images that you think are structurally similar to the given query image.

Note:

The box colors matter. They should NOT be ignored.
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Figure 4. Example of a question presented to turkers on AMT to get relevance judgements on of the returned results for a given floorplan
query.
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Figure 5. Additional retrieved results on floorplan queries, using adjacency graphs, and fully-connected graphs, using both, GCN-CNN [2]
(left column), and LayoutGMN (right column). Note that all the quantitative results shown in the main paper are based on fully- connected
graphs, following the design choice of [2].
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Figure 6. Additional retrieved results on Ul layout queries, using adjacency graphs, and fully-connected graphs, using both, GCN-CNN [2]
(left column), and LayoutGMN (right column). Note that all the quantitative results shown in the main paper are based on fully- connected
graphs, following the design choice of [2].
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Figure 7. Retrieved results for a given query and its top ranked retrieval, using GCN-CNN [2] (left column) and LayoutGMN (right
column). In every set of paired results (row-wise), the first row represents a query ¢ and its top-5 retrievals. In the second row, the query is
the top-1 result of query g in the first row, denoted by ¢"°?~*. Its top-5 retrievals shown against it.
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