
Appendix
In the following, we provide additional details about our
Self-supervised Occlusion-aware Line Descriptor and De-
tector (SOLD2). Section A describes the generation of the
synthetic dataset used to pretrain the network. Section B
details our network architecture. Section C refers to the
multi-task approach used to balance our different losses.
Section D explains into details some parts of the line seg-
ment detection module. Section E gives the exact equations
used to compute the evaluation metrics considered in this
work. Section F provides proof that our results are statisti-
cally meaningful. Section G describes how we preprocessed
the ETH3D dataset. Section H discusses the feasibility of
applying our method to the homography estimation task.
Finally section I displays qualitative examples of our line
detections and matches compared to other baselines.

A. Synthetic dataset examples and homogra-
phy generation

We provide here some examples of the images in our
synthetic dataset and the homographies we used in both data
augmentation and homography adaptation. These shapes
include polygons, cubes, stars, lines, checkerboards, and
stripes. Figure 1 shows some examples of these rendered
shapes.

We follow the same process as in SuperPoint [1] to gen-
erate the random homographies. They are generated as
a composition of simple transformations with pre-defined
ranges: scaling (normal distribution N (1., 0.1)), translation
(uniform distribution within the image boundaries), rotation
(uniformly in [−90◦,+90◦]), and perspective transform. Ex-
amples of the difficulty of the test set can be observed in
Figures 4 and 5 of the supplementary material.

B. Network architecture
We provide here more details about our architecture and

parameter choices. To have a fair comparison with most
wireframe parsing methods [22, 20, 11], we use the same
stacked hourglass network as in [12]. Given an image with
resolution h × w, the output of the backbone encoder is a
h
4 ×

w
4 × 256 feature map. The three heads of the network

are implemented as follows:
Junction branch: It is composed of a 3× 3 convolution with
stride 2 and 256 channels, followed by a 1× 1 convolution
with stride 1 and 65 channels, to finally get the h

8 ×
w
8 × 65

junction map.
Heatmap branch: To keep a light network and avoid artifacts
from transposed convolutions, we perform two consecutive
subpixel shuffles [17] blocks to perform a ×4 upsampling.
More precisely, we use two 3 × 3 conv layers of output
channel sizes 256 and 64, each of them followed by batch

normalization, ReLU activation and a×2 subpixel shuffle for
upsampling. A final 1× 1 convolution with output channel
1 and sigmoid activation is then used to get the final line
heatmap of resolution h× w.
Descriptor branch: The backbone encoding is processed by
two consecutive convolutions of kernels 3 × 3 and 1 × 1,
and output channels 256 and 128, to produce a h

4 ×
w
4 × 128

feature descriptor map. This semi-dense map can be later
bilinearly interpolated at any point location. The triplet loss
is optimized with a margin M = 1 and a minimal distance
to the hardest negative of T = 8 pixels.

We use ReLU activations after each convolution and op-
timize the network with the Adam solver [8]. Images are
resized to a 512× 512 resolution and converted to grayscale
during training.

C. Multi-task learning
The tasks of detecting lines, their junctions, and describ-

ing them are diverse, and we assume them to have a different
homoscedastic aleatoric uncertainty. Additionally, they can
have different orders of magnitude and their relative val-
ues are changing during training, in particular when the de-
scriptor branch is added to the pre-trained detector network.
Therefore, we chose to use the multi-task loss introduced by
Kendall et al. [7] and successfully used in other geometrical
tasks [6, 14], to automatically adjust the weights of the losses
during training.

The final weights of Equation (8) gracefully converged
towards the inverse of each loss, such that the value of each
loss multiplied by its weight is around 1. The final weight
values are the following: e−wjunc = 7.2, e−wline = 16.3
and e−wdesc = 8.2. To show the effectiveness of the dy-
namic weighting, we tried two variants: (1) all loss weights
are 1, and (2) we used the final values from the dynamic
weighting as static loss weights. In the first case, the detec-
tion and description results are worse by at least 10% and
5.5%, respectively. In the second case, the detection and
description results are worse by at least 6.7% and 76.2%,
respectively.

D. Line segment detection details
To convert the raw junctions and line heatmap predicted

by our network into line segments, the following steps are
performed sequentially: regular sampling of points along
each line, adaptive local-maximum search, and accepting
the lines verifying a minimum average score and inlier ratio.
Additionally, an initial step called candidate selection can be
used to pre-filter some of the line candidates L̂. We describe
here two of these steps into more details: the adaptive local-
maximum search, and the candidate selection.
Adaptive local-maximum search. Given a set of points
sampled along a candidate line segment, one wants to extract

1



Figure 1: Image examples from the synthetic dataset. First row: rendered images. Second row: images with estimated
junctions and line segment labels.

the line heatmap values at these sampling locations. How-
ever, since the heatmap is limited to a resolution of one pixel,
some samples may get a lower heatmap value if they land
next to the actual line. Thus, we instead use an adaptive
local-maximum search to find the highest activation of the
line heatmap around each sampling location. Given a line
segment l̂ = (ê1, ê2) from the candidate set L̂ in an image
of size h× w, the search radius r is defined as:

r = rmin + λ
‖ê1 − ê2‖√
h2 + w2

(1)

where rmin =
√
2
2 is the minimum search radius and λ is

a hyper-parameter to adjust the linear dependency on the
segment lengths. We used λ = 3 pixels in all experiments.
The optimal line parameters were selected by a grid search
on the validation set. The rmin parameter can in particular
be kept constant across different image resolutions, without
performance degradation.
Candidate selection (CS). In some application requiring
line matching, having multiple overlapping segments may
hinder the matching as the descriptor will have a harder job
at discriminating close lines. Therefore, a non-maximum
suppression (NMS) mechanism is necessary for lines. Unlike
point or bounding box NMS, there is no well-established
procedure for line NMS. Contrary to usual NMS methods
which are used as postprocessing steps, we implement our
line NMS as a preprocessing step, which actually speeds
up the overall line segment detection as it removes some
line candidates. Starting from the initial line candidates
set L̂cand, we remove the line segments containing other
junctions between their two endpoints. To identify whether
a junction lies on a line segment, we first project the junction
on the line and check if it falls within the segment boundaries.
When it does, the junction is considered to be on the line
segment if it is at a distance of less than ξcs pixels from
the line. Through out our experiments, we adopted ξcs = 3

pixels.

E. Detector evaluation metrics
Similarly to the metrics introduced in SuperPoint [1], we

propose line segments repeatability and localization error
metrics. Both of these metrics are computed using pairs of
images I1 and I2, where I2 is a warped version of I1 under
a homography H. Each image is associated with a set of
line segments L1 = {l1m}

M1
m=1 and L2 = {l2m}

M2
m=1, and d

refers to one of the two line distances defined in this work:
structural distance ds and orthogonal distance dorth.
Repeatability: The repeatability measures how often a line
can be re-detected in different views. The repeatability with
tolerance ε is defined as:

∀l ∈ L1,CL2
(l) =

{
1 if(minl2j∈L2

d(l, l2j )) ≤ ε,
0 otherwise

(2)

Rep-ε =

∑M1

i=1 CL2
(l1i ) +

∑M2

j=1 CL1
(l2j )

M1 +M2
(3)

Localization error: The localization error with tolerance ε is
the average line distance between a line and its re-detection
in another view:

LE-ε =

∑
j∈Corr minl1i∈L1 d(l

1
i , l

2
j )

|Corr|
(4)

Corr = {j | CL1
(l2j ) = 1, l2j ∈ L2} (5)

where |·| measures the cardinality of a set.

F. Statistical evaluation of our method
All the experiments displayed in the main paper are from

a single training run. To justify our statistical improvement
over the baselines, we re-trained the full detector and
descriptor network 5 times with different random seeds

2



ds dorth

Rep-5 ↑ LE-5 ↓ Rep-5 ↑ LE-5 ↓

LCNN [22] 0.336 2.777 0.637 1.878
HAWP [20] 0.451 2.625 0.537 1.738
DeepHough [11] 0.370 2.676 0.652 1.777
TP-LSD [5] 0.563 2.467 0.746 1.450
LSD [19] 0.358 2.079 0.707 0.825
Ours (mean) 0.577 1.955 0.891 0.804
Std deviation 0.020 0.070 0.0055 0.023

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

LBD
LLD
WLD

Ours (LSD lines)
Ours (Full)
Ours (Full w/ NMS)

Figure 2: Statistical significance of the evaluation. We report
the average value µ and standard deviation σ of 5 different training
runs of our method on the Wireframe dataset [4]. Left: repeatability
and localization error of the detector. Right: matching precision-
recall curve with confidence interval [µ− σ, µ+ σ].

each time. Figure 2 displays the same evaluation on the
Wireframe dataset [4] as in our paper with the mean and
standard deviation of the performance of our method over
these 5 runs, and thus shows statistically meaningful results.

G. ETH3D dataset preprocessing
The ETH3D dataset [16] is composed of 13 scenes taken

in indoor as well as outdoor environments. Each image
comes with the corresponding camera intrinsics and depth
map, and a 3D model of each scene built with Colmap [15]
is provided as well. We use the undistorted image downsam-
pled by a factor of 8 to run the line detection and description.
We then use the depth maps and camera intrinsics to repro-
ject the lines in 3D and compute the descriptor metrics in
3D space. While the depth maps have been obtained from
a high-precision laser scanner, they contain some holes, in
particular close to depth discontinuities. Since these disconti-
nuities are actually where lines are often located, we inpaint
the depth in all of the invalid areas at up to 10 pixels from a
valid depth pixel. We used NLSPN [13], the current state of
the art in deep depth inpainting guided with RGB images.

H. Homography estimation experiment
To validate the real-world applications of our method, we

used the line segment detections and descriptors to match
segments across pairs of images of the Wireframe dataset
related by a homography [4] and estimate the homography
with RANSAC [3]. We sample minimal sets of 4 lines to fit a
homography and run up to 1, 000, 000 iterations with the LO-
RANSAC [10] implementation of Sattler et al.1. The repro-
jection error is computed with the orthogonal line distance.
We compute the accuracy of the homography estimation sim-
ilarly as in SuperPoint [1] by warping the four corners of the
image with the estimated homography, warping them back
to the initial image with the ground truth homography and
computing the reprojection error of the corners. We consider

1https://github.com/tsattler/RansacLib

Homography estimation

Lines Desc Accuracy↑ # inliers Reproj. error↓

LSD [19]

LBD [21] 0.781 80 0.791
LLD [18] 0.201 21 0.927
WLD [9] 0.920 116 0.868
Ours 0.948 116 0.863

Ours Ours 0.935 200 0.780

SuperPoint [1] 0.582 173 0.996

Table 1: Evaluation results of homography estima-
tion. The homography between images of the Wireframe
dataset [4] is estimated from line matches using RANSAC.
We use a threshold of 5 pixels in orthogonal line distance to
consider a match to be an inlier.

the estimated homography to be correct if the average repro-
jection error is less than 3 pixels. The results are listed in
Table 1.

When compared on LSD line [19], our descriptors pro-
vide the highest accuracy among all baselines, and our full
pipeline achieves a similar performance. When using our
lines, we use a similar refinement of the junctions as in
LSD [19]: we sample small perturbations of the endpoints
by a quarter of a pixel and keep the perturbed endpoints
maximizing the line average score. Similarly to feature point
methods [1, 2], this experiment shows that learned features
are still on par or slightly worse than handcrafted detections
in terms of localization error.

We also add to the comparison the results of homography
estimation for a learned feature point detector and descrip-
tor, SuperPoint [1]. The point-based approach performs
significantly worse than our method, due to the numerous
textureless scenes and repeated structures present in the Wire-
frame dataset. We also found that SuperPoint is not robust
to rotations above 45 degrees, while our line descriptor can
leverage its ordered sequence of descriptors to achieve in-
variance with respect to any rotation.

I. Qualitative results of line segment detections
and matches

We provide some visualizations of the line segment detec-
tion results in Figure 4 and of the line matching in Figure 3.
Figure 5 also offers a comparison of line matches with point
matches in challenging images with low texture, and re-
peated structures. Our method is able to match enough lines
to obtain an accurate pose estimation, while point-based
methods such as SuperPoint [1] fail in such scenarios.

3

https://github.com/tsattler/RansacLib


L
SD

[1
9]

+
L

B
D

[2
1]

L
SD

[1
9]

+
L

L
D

[1
8]

L
SD

[1
9]

+
W

L
D

[9
]

O
ur

s

Figure 3: Qualitative results of line segment matching. We display line segment matches on the ETH3D dataset [16] with
correct matches, wrong matches and unmatched lines. Only lines shared between the two views are shown. Our full pipeline is
compared to three line descriptor baselines computed on LSD lines [19]: LBD [21], LLD [18] and WLD [9].

4



V
ie

w
2

V
ie

w
1

V
ie

w
2

V
ie

w
1

V
ie

w
2

V
ie

w
1

V
ie

w
2

V
ie

w
1

Figure 4: Qualitative results of line segment detections. We show examples of line detections on the Wireframe dataset [4]
for the following methods: LCNN [22], HAWP [20], DeepHough [11], LSD [19], TP-LSD [5] and ours.5



SuperPoint [1] Ours

Figure 5: Benefits of lines compared to feature points. We compare our method with point matching from SuperPoint [1]
on challenging images of the Wireframe dataset [4] with correct and wrong matches. We use a distance threshold of 5 pixels
to determine if a match is correct, using the orthogonal line distance in the case of lines. Lines can be matched even in the
presence of textureless areas, as well as repeated and symmetrical structures.

6



References

[1] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. In Computer Vision and Pattern Recognition
Workshops (CVPRW), 2018. 1, 2, 3, 6

[2] Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Polle-
feys, Josef Sivic, Akihiko Torii, and Torsten Sattler. D2-Net:
A Trainable CNN for Joint Detection and Description of Lo-
cal Features. In Computer Vision and Pattern Recognition
(CVPR), 2019. 3

[3] Martin A. Fischler and Robert C. Bolles. Random sample
consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Communication
of the ACM, 24(6), 1981. 3

[4] Kun Huang, Yifan Wang, Zihan Zhou, Tianjiao Ding,
Shenghua Gao, and Yi Ma. Learning to parse wireframes in
images of man-made environments. In Computer Vision and
Pattern Recognition (CVPR), 2018. 3, 5, 6

[5] Siyu Huang, Fangbo Qin, Pengfei Xiong, Ning Ding, Yijia He,
and Xiao Liu. Tp-lsd: Tri-points based line segment detector.
In European Conference on Computer Vision (ECCV), 2020.
3, 5

[6] Alex Kendall and Roberto Cipolla. Geometric loss functions
for camera pose regression with deep learning. In Computer
Vision and Pattern Recognition (CVPR), 2017. 1

[7] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task
learning using uncertainty to weigh losses for scene geometry
and semantics. In Computer Vision and Pattern Recognition
(CVPR), 2018. 1

[8] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. International Conference on Learn-
ing Representations (ICLR), 2014. 1

[9] Manuel Lange, Claudio Raisch, and Andreas Schilling. Wld:
A wavelet and learning based line descriptor for line feature
matching. In International Symposium on Vision, Modeling,
and Visualization (VMV), 2020. 3, 4

[10] Karel Lebeda, Jiri Matas, and Ondrej Chum. Fixing the
Locally Optimized RANSAC. In British Machine Vision
Conference (BMVC), 2012. 3

[11] Yancong Lin, Silvia L Pintea, and Jan C van Gemert. Deep
hough-transform line priors. In European Conference on
Computer Vision (ECCV), 2020. 1, 3, 5

[12] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-
glass networks for human pose estimation. In European
Conference on Computer Vision (ECCV), 2016. 1

[13] Jinsun Park, Kyungdon Joo, Zhe Hu, Chi-Kuei Liu, and In So
Kweon. Non-local spatial propagation network for depth
completion. In Proc. of European Conference on Computer
Vision (ECCV), 2020. 3

[14] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and
Marcin Dymczyk. From coarse to fine: Robust hierarchical
localization at large scale. In Computer Vision and Pattern
Recognition (CVPR), 2019. 1

[15] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. 3

[16] Thomas Schöps, Johannes L. Schönberger, Silvano Galliani,
Torsten Sattler, Konrad Schindler, Marc Pollefeys, and An-
dreas Geiger. A multi-view stereo benchmark with high-
resolution images and multi-camera videos. In Computer
Vision and Pattern Recognition (CVPR), 2017. 3, 4

[17] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
Computer Vision and Pattern Recognition (CVPR), 2016. 1

[18] A. Vakhitov and V. Lempitsky. Learnable line segment de-
scriptor for visual slam. IEEE Access, 7, 2019. 3, 4

[19] Rafael Grompone Von Gioi, Jeremie Jakubowicz, Jean-
Michel Morel, and Gregory Randall. Lsd: A fast line segment
detector with a false detection control. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 32(4):722–
732, 2008. 3, 4, 5

[20] Nan Xue, Tianfu Wu, Song Bai, Fudong Wang, Gui-Song Xia,
Liangpei Zhang, and Philip HS Torr. Holistically-attracted
wireframe parsing. In Computer Vision and Pattern Recogni-
tion (CVPR), 2020. 1, 3, 5

[21] Lilian Zhang and Reinhard Koch. An efficient and robust
line segment matching approach based on lbd descriptor and
pairwise geometric consistency. Journal of Visual Communi-
cation and Image Representation, 24(7), 2013. 3, 4

[22] Yichao Zhou, Haozhi Qi, and Yi Ma. End-to-end wireframe
parsing. In International Conference on Computer Vision
(ICCV), 2019. 1, 3, 5

7


