
Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE

(Supplementary Material)

Jialun Peng1 Dong Liu1 Songcen Xu2 Houqiang Li1

1 University of Science and Technology of China 2 Noah’s Ark Lab, Huawei Technologies Co., Ltd.

pjl@mail.ustc.edu.cn, {dongeliu, lihq}@ustc.edu.cn, xusongcen@huawei.com

A. Architecture Hyperparameters and Train-

ing Details.

The hyperparameters used for training the hierarchical

VQ-VAE are reported in Table 1. The hyperparameters used

for training the diverse structure generator are reported in

Table 2. As for the GAN-based texture generator, the hid-

den units of generator and discriminator are both 64. Our

model is implemented in TensorFlow v1.12. Batch size is

8. We train the hierarchical VQ-VAE and the texture gen-

erator on a single NVIDIA 2080 Ti GPU, and train the di-

verse structure generator on two GPUs. Each part is trained

for 106 iterations. Training the hierarchical VQ-VAE takes

roughly 8 hours. Training the diverse structure generator

takes roughly 5 days. Training the texture generator takes

roughly 4 days. All the training time is independent of the

data set and type of masks. Note that the diverse structure

generator and the texture generator can be trained in parallel

after the training of the hierarchical VQ-VAE.

B. Negative Log Likelihood and Reconstruc-

tion Error.

The VQ-VAE is inspired by lossy compression where

performance is usually characterized with rate-distortion

curves [5]. Our hierarchical VQ-VAE minimizes the mean-

square-error (MSE) reconstruction error as the distortion

metric, while our diverse structure generator minimizes the

negative log likelihood (NLL) of global latent. As such,

we report the distortion in MSE and the NLL of global la-

tent (estimate of coding rate) in Table 3. We do not mea-

sure the NLL of local latent because we use a GAN rather

than likelihood-based network for texture generation. Note

that NLL values are only comparable between likelihood-

based networks that use the same pre-trained VQ-VAE.

Our diverse structure generator retains the advantages of

likelihood-based methods, such as a clear objective to com-

pare models, progress tracking, and measurement of over-

fitting and mode coverage (the properties that result in di-

verse samples).

C. Inference Time.

One advantage of GAN-based and VAE-based methods

is their fast inference speed. We measure that FE [2] runs

at 0.2 second per image on a single NVIDIA 1080 Ti GPU

for images of resolution 256×256. In contrast, our model

runs at 45 seconds per image. Naively sampling our autore-

gressive network is the major source of computational time.

Fortunately, this time can be reduced by an order of mag-

nitude using an incremental sampling technique [4] which

caches and reuses intermediate states of the network. We

may integrate this technique in the future.

D. More Visual Examples.

Following the recent inpainting methods, we use center

masks or random masks to train our models on the CelebA-

HQ, Places2, and ImageNet datasets. The center masks are

128×128 center holes in the 256×256 images. The ran-

dom masks are rectangles and brush strokes with random

positions and sizes, similar to those in [7]. We first show

more results of our method using the center-mask models

(see Figures 1, 2 and 3) and the random-mask models (see

Figure 4). We also show some failure cases of our method

(see Figure 5). Then we show that the degree of diversity

is controlled by the condition, i.e. the available content (see

Figures 6 and 7). The degree of diversity is also controlled

by the location and size of the missing region (see Figure

8).

E. Discussions on Artifacts.

Although our method can generate more realistic results

than prior works, some results still have noticeable arti-

facts. We analyze the reasons of these artifacts and find

that most of them are due to the low quality of the gener-

ated structures. Note that we used a light-weight autore-

gressive network in the structure generator for the sake of

computational efficiency, compared with the original, much

more complex network in [5]. We anticipate that the results

will be improved if using the complex network. In addition,
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our texture generator also incurs some artifacts. We may

improve it by integrating the new techniques proposed in

the recent single-solution inpainting studies, such as feature

discriminator [3], multi-scale discriminator [6], and multi-

scale generator [2].

F. Discussions on Diversity.

In our method, the diversity is fully determined by

the learned conditional distribution for structure generation

(since the texture generation has no randomness). We vi-

sualize the pixel-wise entropy of the learned distribution

to analyze the diversity. As shown in Figure 9, the train-

ing dataset and the complexity of incomplete image have

impact on the entropy. Intuitively, higher entropy leads to

higher diversity.

The diversity of the inpainting results depends on at least

the following factors.

(1) The training dataset. Since our method learns a

conditional distribution for diverse structure generation, it

always benefits from diverse training data to enrich the

learned distribution. This is evidenced by the experimen-

tal results that the resulting diversity on the face dataset is

clearly less than that on the natural image datasets (Figure 1

vs. Figure 2); note that the face training images (∼104) are

far less than the natural training images (∼107). We conjec-

ture that using a larger dataset or performing training data

augmentation may be helpful to increase diversity.

(2) The incomplete image for inference. As inpainting

is a conditional generation task, the incomplete image acts

as the condition or the constraint. The available content in

the incomplete image, and the location/size of the missing

region, both decide the diversity of the results to a large ex-

tent. The effect of the available content is shown in Figure 6

and Figure 7. The effect of the location/size of the missing

region is shown in Figure 8.

(3) The mask type. We use center masks or random

masks to train our models. We find that the models trained

with random masks seem to have higher diversity, even for

the same incomplete image (Figure 1 Row 3 vs. Figure 8

Row 1). We conjecture that using more random masks may

be helpful to increase diversity.

(4) The method itself. Taking our method as example, we

may improve the diversity by increasing the support of the

conditional distribution (e.g. codebook size), using more so-

phisticated model for the distribution, adding regularization

terms into the loss function (such as to increase the entropy

of the distribution), etc.

(5) Diversity-quality tradeoff. We believe that there may

be a tradeoff between diversity and quality in the inpainting

task. If we pursue higher diversity, we may try to increase

the entropy of the learned distribution (e.g. by adding regu-

larization terms into the loss function); then, the quality may

be deteriorated since the learned distribution is intentionally

biased. Moreover, from a broader perspective, inpainting is

a signal restoration task; in such tasks there are always dif-

ferent kinds of tradeoff, like the perception-distortion trade-

off [1]. We have interest to theoretically study the quality-

diversity tradeoff in the future.
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Evq-Dvq

Input size 256×256

Latent layers 32×32, 64×64

Commitment loss weight 0.25

Batch size 8

Hidden units 128

Residual units 64

Layers 2

Codebook size 512

Codebook dimension 64

Conv. filter size 3

Training steps 1,000,000

Polyak EMA decay 0.9997

Table 1. Hyperparameters of our hierarchical VQ-VAE.

Gs

Input size 256×256

Latent layer 32×32

Batch size 8

Hidden units 128

Residual units 128

Conditioning hidden units 32

Conditioning residual units 32

Layers 20

Attention layers 4

Attention heads 8

Conv. Filter size 3

Dropout 0.1

Output stack layers 20

Training steps 1,000,000

Polyak EMA decay 0.9997

Table 2. Hyperparameters of our diverse structure generator.

Training NLL Validation NLL Training MSE Validation MSE

CelebA-HQ 1.180 1.243 0.0028 0.0033

Places2 0.969 0.952 0.0042 0.0042

ImageNet 1.127 1.113 0.0082 0.0084

Table 3. Quantitative results of negative log likelihood (NLL) and mean-squared-error (MSE) in the training and validation of our random-

mask models. The reported results are evaluated on the CelebA-HQ, Places2, and ImageNet datasets.
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Figure 1. Additional results on the CelebA-HQ test set using the center-mask CelebA-HQ model.
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Figure 2. Additional results on the Places2 validation set using the center-mask Places2 model.
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Figure 3. Additional results on the ImageNet validation set using the center-mask ImageNet model.
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Figure 4. Additional results on the CelebA-HQ, Places2, and ImageNet test (or validation) sets using the random-mask models.
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Figure 5. Failure cases of our method on the CelebA-HQ, Places2, and ImageNet test (or validation) sets. (Top) Face image inpainting with

big holes. The results are of low quality, e.g. distorted faces, asymmetric eyes, missing nostrils, and blurry teeth. (Middle) Scene image

inpainting with a complex structure. The results cannot reconstruct the bridge architecture and the bridge holes of varying sizes. (Bottom)

Natural image inpainting with a hole of mixed foreground (i.e. dog) and background (i.e. trees). A large portion of foreground is lost. And

the generated results have unsatisfactory structures and blurry textures.

Figure 6. Additional results of our method with low diversity. The degree of diversity is limited when the available content has a simple

structure and a plain texture.

Figure 7. Additional results of our method with high diversity. The degree of diversity is high when the available content has a complex

structure and an intricate texture.
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Figure 8. Additional results on one CelebA-HQ test image with different holes using the random-mask CelebA-HQ model. For different

rows, the degree of diversity is controlled by the location and size of the missing region.

Figure 9. Visualization results of the entropy of learned distribution. For each row, from left to right, the pictures are: incomplete image,

one result of our method, and the corresponding visualized entropy. The maximum entropy is 9 because the codebook size is K = 29.
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