
Learning to Predict Visual Attributes in the Wild –
Supplementary Material

Khoi Pham1 Kushal Kafle2 Zhe Lin2 Zhihong Ding2 Scott Cohen2

Quan Tran2 Abhinav Shrivastava1
1University of Maryland, College Park 2Adobe Research

1{khoi,abhinav}@cs.umd.edu 2{kkafle, zlin, zhding, scohen, qtran}@adobe.com

Contents

1. Example Predictions from our SCoNE Model 1

2. Additional Details for the VAW Dataset 1

3. Additional Ablation Studies 2
3.1. Study of different reweighting and resam-

pling methods . . . . . . . . . . . . . . . . 2
3.2. Components of the Strong Baseline . . . . . 4
3.3. Interaction of SupCon and Attention module 4

4. Evaluation Metrics 4

5. Implementation Details 6

6. Additional Details for Negative Label Expansion 6

7. Image Search Results from our SCoNE Model 6

1. Example Predictions from our SCoNE
Model

Figure 1 shows more qualitative results of our SCoNE
algorithm together with the object localizer result as well
as one (out of three total) attention maps from the multi-
attention module. Throughout all examples, we can see
that our model performs robustly for various attribute types.
Our object localizer can correctly infer the object region and
help alleviate the object occlusion problem, which is partic-
ularly a challenge for models that use global average pool-
ing for feature aggregation. For example, in figure 2e, the
object table is partially occluded by a lot of clutter which
can distract a model that relies on global average pooling.
Here, our object localizer clearly isolates the parts of table,
making it easier to predict its attributes. However, object
attributes are not always dependent on the foreground or
surface features. Many attributes depend on the context,
e.g., parked vs. running car. Therefore, we designed our
multi-attention module to complement the object localizer

by allowing it to attend to image regions outside the object.
This can be clearly seen in figure 2a, where attributes such
as sunny or bright can be hard to infer by simply looking at
the given object tree. Our multi-attention module looks at
the sunny spots on the pavement which can help our model
infer the presence of sunny and bright attributes. However,
the multi-attention module is also free to attend to regions
in the object to further supplement object localizer’s atten-
tion to specific parts of object. For example, in figure 2d,
our multi-attention module attends to the hind legs of dog,
which supplements the object localizer’s attention map and
can provide additional information to help the model infer
that the dog is jumping.

2. Additional Details for the VAW Dataset

In figure 2, we show examples of images and their at-
tribute annotations from the VAW dataset. The images show
both positive and negative annotations from our dataset as
well as a subset of the result of our negative label expan-
sion scheme, which is a rule-based system derived on the
premise of mutual exclusivity of certain attributes. For
example, if an object is annotated with positive attribute
empty, the attribute filled can be auto-annotated as a neg-
ative attribute for the same object.

In figure 3, we show the distribution of top-15 attributes
in various attribute categories arranged in descending order
according to the number of available positive annotations.
The diagram clearly shows the long-tailed nature of our
VAW dataset, with some categories showing highly skewed
distributions (color, material) and others have a more evenly
balanced distribution (texture, others). For example, in the
material category, the annotations for top-2 attributes (metal
and wooden) consist of over 30.91% of total number of an-
notations (41.4% of positives and 23.5% of negatives). Re-
assuringly, our strong baseline as well as SCoNE model
works almost equally well for more balanced categories
(e.g., texture) as well as a skewed category (e.g., material).
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Figure 1. Qualitative results. Examples of predictions from SB+SCoNE. We show the object name and its ground truth positive attribute
labels above the image. The object localized region, attention map #1, and model top-10 predictions are shown below. Red text represents
missed or incorrect predictions.

3. Additional Ablation Studies

3.1. Study of different reweighting and resampling
methods

Our VAW dataset, by nature, has a large amount of data
imbalance which is further exacerbated after our negative
label expansion. Hence, we also studied various reweight-
ing and resampling techniques to tackle this issue. Here,
we show results for different methods that we considered.
These methods include: (1) Class-aware sampling (CAS)
[13]: fill classes in a training batch as uniform as possi-
ble; (2) Inverse frequency (IF) [17]: assign weight of each

class to be inversely proportional to its frequency (applied
with smoothing factor α = 0.1); (3) Class-balanced (CB)
[1]: also a class-wise reweighting method similar to [17]
but uses effective number instead of actual number of posi-
tives En = (1 − βn)/(1 − β) with β = 0.999 and n is the
number of positives; (4) RW-BCE: our proposed reweight-
ing scheme presented in section 4.4 in the main paper; ours
is the only method among these that explicitly assigns dif-
ferent weight for the positive and negative label of every
class (5) Repeat factor sampling (RFS) [9, 4]: a resampling
trick that oversamples images that contain the tail classes.

The results are reported in table 1. All these techniques
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Figure 2. Examples of images and their annotations from the VAW dataset. Object names, positive attributes, explicitly labeled negative
attributes, and negative labels from our negative label expansion are shown in corresponding colors for each example.

Color Material Shape

Texture Action Size

Positive Negative
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Figure 3. Distribution of positive and negative annotations for attributes in different categories. We show the top-15 attributes with the
most number of positive annotations in each category sorted in descending order.

are implemented on top of the ResNet-Baseline model and
trained on the training data after negative label expansion.

CAS achieves low mAP score while still having decent
mR@15 and mA. Because the VAW dataset is extremely
imbalanced, applying CAS can lead to severe undersam-

pling (or oversampling) of the head (or tail) classes. In addi-
tion, since CAS maintains a uniform distribution of classes
in a training batch, no classes are dominant by the others as
well as the negative examples do not dominate the positive
examples. Hence, CAS still achieves good mean recall and
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Methods (+negative label expansion) mAP mR@15 mA F1@15

ResNet-Baseline 65.6 53.8 69.4 68.6
+ Class-aware sampling (CAS) [13] 63.5 56.6 70.2 65.4
+ Class-balanced (CB) [1] 65.7 54.7 69.6 68.4
+ Inverse frequency (IF) [17] 65.8 54.8 69.6 68.4
+ RW-BCE 66.0 56.1 70.3 68.8
+ Repeat factor sampling (RFS) [9] [4] 65.6 55.2 70.0 68.2
+ RW-BCE + RFS 66.0 57.0 70.6 68.8

Table 1. Investigation of different reweighting and resampling
methods.

mean accuracy.
IF and CB both assign higher weights for tail classes and

achieve better results across all metrics over the baseline.
Our formulation, RW-BCE, aims at (1) mitigating the over-
suppression and rarity of negative examples and (2) high-
lighting the rare classes using the same weighting as in IF,
hence, it achieves better results in all metrics over IF and
CB. Finally, RFS is a resampling trick that does not rely on
undersampling the head classes, thereby addressing one of
the weaknesses of CAS, resulting in better performance in
the VAW dataset. Because RFS is a sampling technique,
it can be used in conjunction with any reweighting meth-
ods. Therefore, we use RW-BCE along with RFS (referred
as RR) in our main paper whose results are better than the
others across most metrics as shown in table 1.

3.2. Components of the Strong Baseline

In the main paper, we presented ablations for our
SB+SCoNE model, which is comprised of Strong Base-
line, Negative label Expansion, and Supervised Contrastive
Learning. However, Strong Baseline itself is comprised of
many sub-components which extends the ResNet-Baseline:
the object localizer, the multi-attention module, and the us-
age of low-level features. In this section, we will dissect
how each of these components affect our Strong Baseline
model.

We ablate our Strong Baseline model with each compo-
nent and train on our training data after negative label ex-
pansion. We report results in table 2.

Removing each sub-component has a negative effect on
the performance of the Strong Baseline model. For exam-
ple, removing the use of low-level features not only lowers
mAP in color and material attributes but it also lowers it for
higher-level attributes (e.g., action). This is likely due to
the absence of clearly defined low- and high-level features,
which forces a ‘single’ feature to represent both low- and
high-level features. This adversely affects the network’s
ability to learn high-level attributes (e.g., action) as well
as low-level (color, texture), thus lowering performance for
both.

Interestingly, removing the object localizer does not re-
sult in a drastically diminished performance. Visualiz-
ing the multi-attention output of our full model (Fig. 2)

reveals that even without object mask supervision, the
model is still able to differentiate between object and back-
ground/distractors with the multi-attention maps which are
trained with weak supervision from the attribute labels.
However, removing all components, which is devoid of
any form of attention, severely hampers model performance
across all categories.

In general, all sub-components are necessary for our
model to perform well across different attribute types.

3.3. Interaction of SupCon and Attention module

As presented in the main paper, using SupCon as a pre-
training scheme can be at odds with the attention mod-
ule. To investigate this issue, we compare between the
following models that are trained on the training set after
negative label expansion: (1) Strong Baseline, (2) Strong
Baseline + SupCon pretraining, (3) Strong Baseline without
multi-attention, (4) Strong Baseline without multi-attention
+ SupCon pretraining, and (5) Strong Baseline with SupCon
joint training. The results are reported in table 3.

From the results, we can see that SupCon pretrained
helps improve model performance for our strong baseline
model variant without multi-attention. This clearly shows
that SupCon is an effective technique. However, we can
also see that the mAP score drops when using SupCon pre-
training for the unmodified Strong Baseline model, which
consists of multi-attention module. We conjecture that Sup-
Con pretraining being incompatible with multi-attention is
largely because SupCon pretraining uses global average
pooling (GAP) for feature aggregation which encourages
the feature extractor to ignore the surrounding context (the
majority of attribute features lie on the object foreground
which is in the image center), whereas the multi-attention
module aims to detect features at different locations includ-
ing the surrounding.

To alleviate this issue, we jointly train the supervised
contrastive loss with our whole model. Results from table 3
shows that SupCon joint training no longer experiences the
above problem while improves almost all overall metrics.
The benefit of SupCon joint training is even more evident
in the tail classes.

Supervised contrastive learning is still a new learning ap-
proach with very few exploration in the community. We
believe there will be better ways to incorporate supervised
contrastive learning in a multi-label setting such as ours.

4. Evaluation Metrics
In this section, we present details about the different

evaluation metrics that we use. We have used mAP as our
primary metric, since it describes the quality of the model to
rank correct images higher than the incorrect ones for each
attribute label. mR@15 is also important as it shows how
well the model manages to output the ground truth positive
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Methods (+Neg) Overall Class imbalance (mAP) Attribute types (mAP)

mAP mR@15 mA F1@15 Head Medium Tail Color Material Shape Texture Action Others

Strong Baseline 67.7 54.3 70.0 69.6 75.9 64.3 46.9 68.8 73.9 67.0 69.4 60.2 69.1
w/o Multi-attention (MA) 67.4 53.5 69.7 69.7 75.9 63.8 46.4 67.8 74.7 66.9 68.5 58.0 69.0
w/o Low-level feature (LL) 67.3 53.7 69.9 69.4 75.4 63.8 48.4 68.5 73.6 66.1 67.5 59.3 68.9
w/o Object localizer (OL) 66.9 53.1 69.6 69.1 75.3 63.4 45.5 67.5 73.8 66.5 68.4 58.9 68.3
w/o OL, MA and LL 65.6 53.8 69.4 68.6 74.8 62.3 43.2 67.3 73.3 66.3 67.7 56.0 67.4

Table 2. Ablation study on the three components of the Strong Baseline model by removing each one. The last row also corresponds to the
ResNet-Baseline model.

Methods (+Neg) Overall Class imbalance (mAP) Attribute types (mAP)

mAP mR@15 mA OV-F1 Head Medium Tail Color Material Shape Texture Action Others

Strong Baseline 67.7 54.3 70.0 69.6 75.9 64.3 46.9 68.8 73.9 67.0 69.4 60.2 69.1
+ SupCon pretraining 67.3 54.8 70.0 69.5 75.7 63.8 45.5 67.8 73.1 66.8 69.2 59.6 68.8
+ SupCon joint training 68.2 55.2 70.3 70.0 76.1 64.7 47.8 69.1 75.0 67.3 69.8 60.0 69.4

SB w/o Multi-attention 67.4 53.5 69.7 69.7 75.9 63.8 46.4 67.8 74.7 66.9 68.5 58.0 69.0
+ SupCon pretraining 67.6 54.1 69.7 69.8 75.9 63.9 46.6 67.7 75.0 67.0 68.3 57.7 69.1

Table 3. Experiments to show the incompatibility between SupCon pretraining and multi-attention used by both our Strong Baseline and
SCoNE model. The top section shows results that accuracy decreases when using SupCon pretraining with multi-attention in Strong
Baseline model, which can be alleviated by switching to jointly training. The bottom section shows that SupCon pretraining works well on
its own when multi-attention is not being used.

attributes in its top 15 predictions in each image. In addi-
tion, mA and F1@15 can also be used to evaluate model
performance in a different light.
mAP: similar to [16], the mAP score is computed by taking
the mean of the average precision of all C classes

mAP =
1

C

∑
c

APc, (1)

in which the average precision of each class is computed as

APc =
1

Pc

Pc∑
k=1

Precision(k, c) · rel(k, c), (2)

where Pc is the number of positive examples of class c,
Precision(k, c) is the precision of class c when retrieving
the best k images, rel(k, c) is the indicator function that re-
turns 1 if class c is a ground-truth positive annotation of the
image at rank k. Note that due to VAW being partially la-
beled, we compute this metric only on the annotated data
similar as in [16]. This evaluation scheme is also similar to
what is used in [4], where the authors introduce the defini-
tion of federated dataset. In this federated dataset setup, we
only need for each label a positive and a negative set, then
average precision for each label can be computed on these
2 sets.
mA: as in [8, 15], we compute the mean balanced accuracy
(mA) to evaluate all models in a classification setting, using
0.5 as threshold between positive and negative prediction.
Because our dataset is highly unbalanced between the num-
ber of positive and negative examples for some attributes,

balanced accuracy is a good metric as it calculates sepa-
rately the accuracy of positive and negative examples then
take the average of them. In concrete, the mA score can be
computed as follows

mA =
1

C

∑
c

(TPc

Pc
+
TNc

Nc

)
/2, (3)

where C is the number of attribute classes, Pc and TPc are
the number of positive examples and true positive predic-
tions of class c, and Nc and TNc are defined similarly for
the negative examples and predictions. Because mA uses
threshold 0.5, models that are not well-balanced between
positive and negative prediction tend to receive low score.
mR@15 and F1@15: we follow [3] to compute the preci-
sion, recall and F1 score. For each image, we consider the
top 15 predictions of the model as its positive predictions.
These predictions are then compared with the ground-truth
annotations to compute the metrics. Because VAW dataset
is partially labeled, we only consider the predictions of la-
bels that have been annotated, i.e. if class c is predicted on
an image but that image is unannotated for class c, then the
prediction is ignored. The overall precision and recall are
computed as follows

OV-Precision =

∑
c TPc∑
cN

p
c
, OV-Recall =

∑
c TPc∑
c Pc

, (4)

where TPc is the number of true positives for attribute class
c,Np

c is the number of positive predictions of class c, and Pc

is the number of ground truth positive examples of class c.
With the same notations, the per-class precision and recall
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are computed as

PC-Precision =
1

C

∑
c

TPc

Np
c
, PC-Recall =

1

C

∑
c

TPc

Pc
.

(5)
The F1 score is the harmonic mean of precision and re-

call, which is defined as

OV-F1 =
2× OV-Precision× OV-Recall

OV-Precision + OV-Recall
, (6)

PC-F1 =
2× PC-Precision× PC-Recall

PC-Precision + PC-Recall
. (7)

In our paper, we report the per-class recall and overall
F1 score, and we refer to them respectively as mR@15 and
F1@15 throughout the text and our tables.

5. Implementation Details

We use the ImageNet-pretrained [2] ResNet-50 [6] as
the feature extractor, and use the output feature maps from
ResNet block 2 and 3 as low-level features. For the object
name embedding, we use the pretrained GloVe [12] 100-d
word embeddings. We do not finetune these word embed-
dings during training as we want our model to generalize to
unseen objects during test time.

We implement our model in PyTorch [11] and train us-
ing Adam optimizer with the default setting, batch size 64,
weight decay of 1e− 5, an initial learning rate of 1e− 5 for
the pretrained ResNet and 0.0007 for the rest of the model.
We train for 12 epochs and apply learning rate decay of 0.1
every time the mAP on the validation set stops improving
for 2 epochs. We use image size 224x224 as input and ba-
sic image augmentations which include random cropping
around object bounding box, random grayscale when an in-
stance is not labeled with any color attributes, minor color
jittering, and horizontal flipping. For each object bound-
ing box in the dataset, we expand its width and height by
min(w, h)× 0.3 to capture more context. For the hyperpa-
rameters, we set λfg = 0.25, λdiv = 0.004. In the multi-
attention module, we select Dproj = 128 and use M = 3
attention maps. Regarding reweighting and resampling, we
use t = 0.0006 for RFS and α = 0.1 for smoothing in the
RW-BCE reweighting terms.

For SupCon pretraining, we pretrain on top of ImageNet-
pretrained ResNet for 10 epochs with batch size 384 (768
views per batch), and initialize all matrices Ac with the
identity matrix. In the contrastive loss, we set temperature
τ = 0.25. We believe using a larger batch size will greatly
benefit supervised contrastive pretraining as suggested by
the authors [7]. For SupCon joint training with the other
losses of the Strong Baseline model, we keep batch size as
64, we add λsupLsup to the loss where λsup = 0.5, and all
other hyperparameters are the same as above.

6. Additional Details for Negative Label Ex-
pansion

We classify the attributes into types and construct their
overlapping and exclusive relations using existing ontology
from a related work [5], WordNet [10], and the relation
edges from ConceptNetAPI [14]. Specifically:

• Attribute categories: are automatically derived from
WordNet hypernyms and ConceptNetAPI IsA relation
edge. These are then manually verified.

• Overlapping relations: from WordNet, we check if two
attributes share the same synset (e.g., muddy and dirty
share WordNet synset dirty.s.06). From ConceptNe-
tAPI, we use the following relation edges: Synonym,
SimilarTo, DerivedFrom.

• Exclusive relations: From WordNet, we use antonyms
retrieved from the synsets’ lemmas. From ConceptNe-
tAPI, we use the following relations: Antonym, Dis-
tinctFrom.

7. Image Search Results from our SCoNE
Model

We show from Figure 4 to Figure 8 our image search
(ranking) results when searching for specific attributes. Our
model is able to search for images that exhibit one to multi-
ple attributes, as demonstrated in Figure 5 where we search
for multiple colors at a time. In addition, the results in Fig-
ure 8 also show that our model is able to differentiate be-
tween objects with different size (e.g., small vs. large bird,
small vs. large phone).
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