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Figure 1: Model guidance for training for sample φ values (white text inset).

We provide the reader with additional insights about
the importance of model guidance with details and ab-
lations (Sec. 1), further training implementation de-
tails (Sec. 2). Additional qualitative results are reported in
this document (Sec. 3). Refer to the video for additional
visualizations.

1. Model guidance
Models – shown in Fig. 1 – are intentionally providing

only a coarse training guidance and not intended for re-
alistic translations. This is a fundamental difference with
prior works [7, 10] as it allows learning complex visual ef-
fects non-modeled in the guidance. In particular from above
figure, Day7→Timelapse model provides a tone mapping
guidance that intentionally does not encompass realistic
dawn/dusk/night visual appearance. Similarly, iPhone 7→
DSLR is a naive blurring guidance, and Syntheticclear 7→
Realclear, foggy provides guidance only on the foggy appear-
ance while ignoring the synthetic-to-real changes. In Co-
MoGAN, the learning relies on our DRB block (main paper
Sec. 3.2) to disentangle features so as to relax the model and
learn the complex non-modeled features from unsupervised
target data.

1.1. Details

Day 7→Timelapse. We render intermediate conditions by
interpolating the tone-mapped model from [9], written Ω(.).

Since the latter was originally designed only for night time
rendering, we replace the target color in Ω(.) by the average
of the Hosek sky radiance model [5], denoted HSK(φ). For
implementation reason, we accordingly map φ to [0, 2π] so
that max and min sun elevation angles corresponding to 30◦

and −40◦, respectively. The complete model writes

M(x, φ) = (1−α)x+αΩ(x,HSK(φ)+corr(φ))+corr(φ) ,
(1)

with α the interpolation coefficient defined as,

α =
1− cos(φ)

2

and corr(φ) an asymmetrical hue correction to arbitrarily
account for temperature difference at dusk and dawn. It
writes

corr(φ) =

{
[0.1, 0.0, 0.0] sin(φ) if sin(φ) > 0,

[0.1, 0.0, 0.1](− sin(φ)) Otherwise.
(2)

The effect of corr(.) is visible in Fig. 1 at φ = 5/8π and
φ = 11/8π, which both maps to elevation of −13.75◦ for
dusk (right image) and dawn (left image). We found that
it slightly pushes the network towards better discovery of
the red-ish and purple-ish appearance of dusk and dawn,
respectively. Its importance is evaluated in Sec. 1.2.

Syntheticclear 7→ Realclear, foggy. As mentioned, the guid-
ance only account for fog without modeling real traits. We
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Figure 2: The complete training strategy for CoMo-MUNIT and CoMo-CycleGAN is composed by reconstruction, adversar-
ial and cycle consistency constraints. The adversarial pipeline is adaptable to other GAN architectures seamlessly.

Model IS↑ CIS↑ LPIPS↑

MUNIT 1.43 1.41 0.583

w/o color 1.42 1.35 0.577
w/o corr 1.56 1.45 0.579

CoMo-MUNIT 1.59 1.51 0.580

Table 1: We ablate the importance of a correct model for
the cyclic scenario in Day 7→ Timelapse. Not distinguish-
ing between dusk and dawn (w/o corr) brings the optimiza-
tion to a simpler minimum, resulting in lower variability but
still outperforming baseline MUNIT on IS/CIS. In the much
harder guidance with only grayscale images (w/o color), the
network gets slightly outperformed in image quality and di-
versity by baseline, still we are able to learn a reasonable
data organization. CoMo-MUNIT performs best, using the
complete model in Eq. 1.

use the model f(x, d) from [4] to augment clear image with
fog, assuming a depth map d. We use depth maps from ei-
ther Cityscapes [2] or Synthia [8] projects pages. More in
depth, [4] renders fog by applying a standard optical extinc-
tion model. The model writes

f(x, d) = xe−β(φ)d + L∞(1− e−β(φ)d) , (3)

with L∞ arbitrarily set to 0.859. We obtain the so-called
extinction coefficient β(φ), by applying a step linear func-
tion following standard fog literature to map the maximum
visibility from ∞ (clear weather) to 75m (thick fog). In
formulas,

β(φ) =

{
0 if φ <= 0.2,

(φ− 0.2) · ( 0.045
1−0.2 ) Otherwise.

(4)

iPhone 7→ DSLR. As model for guidance, we simply use
gaussian blurring, with kernel radius in pixels accordingly
mapped to φ values, as

M(x, k) = G(k) ∗ x , (5)

being G the Gaussian kernel, x input and k kernel size,
which is directly mapped from φ ∈ [0, 1] 7→ k ∈ [0, 8].

1.2. Model ablations

To evaluate the importance of model guidance, we ab-
late the model for Timelapse translation as it is the most
complex translation task addressed. Performance is re-
ported in Tab. 1.

Departing from the complete model in Eq. 1, we re-
moved 1) the corr term (w/o corr), hence not distinguish-
ing between dawn and dusk, and 2) color from the model
(w/o color), hence providing only brightness information as
guidance. From results in Tab. 1, while the complete model
(CoMo-MUNIT) performs best, we still perform similar or
better than the backbone by achieving controllable output
even with symmetrical guidance (i.e. w/o corr) or naive
brightness guidance (w/o color). This demonstrates that
simple guidance is sufficient to reorganize the unsupervised
target manifold.

2. Training details
Exploiting pairwise data. While losses presented in the
paper are often sufficient to achieve convergence, we expe-
rienced that adding additional constraints with the available
pairwise data further regularizes training to Lφ, such as

LGφM = ||φ-Net(yφM , ỹ
φ
M )||2

+ ||φ-Net(yφM , ỹ
φ′

M )−∆φ||2,

L0 = ||φ-Net(yφ, yφM )||2,

(6)

We use those in all our trainings, adding them to Lφ.

Detailed training representation. In Fig. 2, we represent
in details all constraints needed for CoMo-MUNIT/CoMo-
CycleGAN training, which is composed by (1) reconstruc-
tion, (2) adversarial training and (3) cycle consistency. Ad-
ditional regularization losses described above are omitted
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for clarity. Again, steps (1) and (3) are necessary for cycle-
consistency based network, still we assume the adversarial
training (2) will be adaptable to any baseline.

Hyperparameters. We balance the contributions of the
losses by weighting them when training CoMo-MUNIT in
CoMo-CycleGAN. Specifically, for LM and Lφ we use a
weight of 10 and for Lreg a weight of 1. The learning rate
is set to lr = 1e− 4 for CoMo-MUNIT and lr = 2e− 4 for
CoMo-CycleGAN as in [6] and [12], respectively.

Image size. We train Day 7→ Timelapse and
Syntheticclear 7→ Realclear, foggy on x4 downsampled
images, and train iPhone 7→ DSLR on 256x256 resized
images. All training use horizontal flip data augmentation.

3. Additional qualitative results
We show additional qualitative results for Day 7→

Timelapse (Figs. 3,4,5,6 and video), Syntheticclear 7→
Realclear, foggy (Fig. 7) and iPhone 7→ DSLR (Fig. 8). Note
again that all Day 7→ Timelapse baselines use an additional
supervision at Dusk/Dawn, which we do not require.

Additional results are aligned with the main ones, with
noticeable benefit over baselines such as: accurate man-
ifold discovery (note the stable appearance of night in
Figs. 3,4,5,6), the discovery of non-modeled features (note
lights at night in Figs. 3,4,5,6, real traits in Fig. 7 and the
depth-of-field like effect in Fig. 8).
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Figure 3: Additional qualitative results for Day 7→ Timelapse translations and baselines. Note all baselines (StarGAN v2,
DLOW, DNI-CycleGAN, DNI-MUNIT) use additional Dusk/Dawn supervision.
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Figure 4: Additional qualitative results for Day 7→ Timelapse translations and baselines. Note all baselines (StarGAN v2,
DLOW, DNI-CycleGAN, DNI-MUNIT) use additional Dusk/Dawn supervision.
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Figure 5: Additional qualitative results for Day 7→ Timelapse translations and baselines. Note all baselines (StarGAN v2,
DLOW, DNI-CycleGAN, DNI-MUNIT) use additional Dusk/Dawn supervision.
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Figure 6: Additional qualitative results for Day 7→ Timelapse translations and baselines. Note all baselines (StarGAN v2,
DLOW, DNI-CycleGAN, DNI-MUNIT) use additional Dusk/Dawn supervision.
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Source
Synthetic (clear) Real (clear) CoMo-MUNIT Real (foggy)

Figure 7: Additional qualitative results for Syntheticclear 7→ Realclear, foggy.
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Source
iPhone iPhone CoMo-CycleGAN DSLR

Figure 8: Additional qualitative results for iPhone 7→ DSLR.
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