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1. Modified Adversarial loss function

For achieving a more stable convergence, we used a loss
mechanism similar to the loss presented by [ 1], with a small
modification, which smoothly reaches the adversarial goal
only to the desired extent, leaving space for other regular-
ization terms. For untargeted attack:

{(y,t) = max <O7min (;Em(y,t)2,€m(y,t)>> (1)

Cn(y,t) = ys — gl;g(yi) +m. (2)

m > 0 is the desired margin of the original class probabil-
ity below the adversarial class probability. When loss val-
ues are within the desired margin, the quadratic loss term
relaxes the relatively steep gradients and momentum of the
optimizer, and the difference between the first and second
class probabilities approach the desired margin m. When
the loss starts rising, the quadratic term gently maintains
the desired difference between these two classes, therefore
preventing overshoot effects. In order to apply the sug-
gested mechanism on targeted attack, the loss term changed
to £y, (y,t) = max; £ (y;) — y¢ +m, while this time, ¢ is the
targeted adversarial class.

In some cases it would be beneficial to follow [1] and
use the logits instead of the probabilities for calculating the
loss. We suggest adapting this method partially by keeping
the desired margin in probability space, normalized at each
iteration accordingly, for margin defined in logit space may
be less intuitive as a regularization term.
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Figure 1: Learning process of the modified loss mechanism.
Probabilities (green and red lines) corresponds to the left y-
scale. Roughness and thickness (blue lines) are in percents
from the full gray-level range of the image (right y-scale).
original class is the probability of the actual class of the
unperturbed video. max class is the probability of the most
probable class as the classifier predicts.

2. Implementation Details

2.1. Experiments on I3D

Experiment codes are implemented in TensorFlow' and

based on 13D source code’. The code is executed on a
server with four Nvidia Titan-X GPUs, Intel i7 processor
and 128GB RAM. For optimization we adopt the ADAM
[2] optimizer with learning rate of 1e-3 and with batch size
of 8 for the generalization section and 1 for a single video
attack. Except where explicitly stated 5, = B2 = 0.5. For

https://www.tensorflow.org/
Zhttps://github.com/deepmind/kinetics—i3d
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single video attack and for generalization sections A = 1.

2.2. Experiments on MC3, R3D, R(2+1)D

Experiments code are implemented in PyTorch® and
based on source code of computervision-recipes* and
torchvision® package. Hardware, optimizer, batch size,
[1, B2 and X are the same as previously introduced for the
13D model.

3. Single Video Attack
3.1. Convergence Process

In order to demonstrate the convergence process we have
attacked a single video. As can be seen, several trends re-
garding the trends can be observed (Figure 1). At first, the
adversarial perturbation rises in thickness and roughness.
At iteration 40 the top-probability class switches from the
original to the adversarial class, which until now was not
plotted, for this adversarial attack is untargeted. At that it-
eration, the adversarial loss is m. When the difference be-
tween the probability of the adversarial and original class
is larger then m the adversarial loss is zero and the regu-
larization starts to be prominent, causing the thickness and
roughness to decay. This change of trend occurs slightly
after the adversarial class change due to the momentum of
the Adam optimizer and remaining intrinsic gradients. At
iteration 600 the difference between the probability of the
adversarial and original class is m = 0.05, the quadratic
loss term maintaining the desired difference between these
classes while diminishing the thickness and roughness. The
binary loss changes at the interface between adversarial suc-
cess and failure caused convergence issues, and the imple-
mentation of the quadratic term, as defined in Equation (1)
handled this issue.

3.2. Thickness Vs. Roughness

In order to visualize the trade-off between 3, and B, we
plotted three graphs in Figure 4. In top and bottom graphs
we see the temporal amplitude of the adversarial perturba-
tion of each frame and for each color channel, respectively.
The extreme case (top) of minimizing only D (given suc-
cess of the untargeted adversarial attack) and leaving Do
unconstrained (8 = 1, 82 =0). The signal of the RGB chan-
nels fluctuates strongly with a thickness value of 0.87% and
a roughness of 1.24%. The other extreme case (bottom) is
when Ds is constrained and D1 is not (81 =0, 3 = 1), lead-
ing to a thickness value of 1.66% and a roughness value of
0.6%. The central image displays all the gradual cases be-
tween the two extremities: 1 goes from 1 to 0, and S5 from

3https://pytorch.org/
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0to 1 on the y-axis. The row denoted by /35 = 0 corresponds
to the upper graph and the row denoted by 82 = 1 corre-
sponds to the lower graph. Both D; and D5 are very dom-
inant in the received perturbation, as desired. Visualization
of the path taken by our loss mechanisms at different 5, and
B2 values can be found in the supplementary material.

Apart from the visualization experiments we showed, an-
other experiment have been conducted in order to visualize
the path taken by our loss mechanism at different 3; and
B2. We have plotted a 3D representation in probability-
thickness-roughness space for 10 different experiments (10
different single video attack on the same video) with grad-
ual change of 31 and [, parameters. Figure 5 shows the
probability of the most probable class at 10 different scenar-
ios as described in the legend. One can see that at the begin-
ning the maximal probability (original class) drops from the
initial probability (upper section of the graph) on the same
path for all of the described cases, until the adversarial per-
turbation takes hold of the top class. From there, the 5’s
parameters takes the lead. At this point, each different case
is converging along a different path to a different location
on the thickness-roughness plane. The user may choose the
desired ratios for each specific application.

4. Additional models, baseline comparison and
transferability

4.1. Baseline comparison

In addition to the table presented in the paper, we have
analyzed our experiments from the attacked model per-
spective. Each Sub-figure in Figure 6 shows the aver-
age fooling ratio of the attacked model (out of four) with
different perturbation as function of £.,[%)]. Each sub-
figure combine three (two in I3D)° main graph types, the
dashed graph represent the universal flickering perturba-
tion developed upon the attacked model (67), the dot-
ted graphs represent the universal flickering attack devel-
oped upon other models (except for I3D) and the contin-
ues graphs represent the random generated flickering per-
turbation (67, 63 rinarazs Ochu s p1) Where the shaded filled
region is &+ standard deviation around the average fooling
ratio. Several consistent trends can be observed in each one
of the sub-figure and thus for each attacked model. For each
£ [%] we can see that the fooling ratio order (high to low)
is, first universal flickering attack, then the transferred uni-
versal flickering attack developed upon other models and
finally, the random generated flickering perturbations.

6 The transferabilty between I3D to the other models (and vice versa)
were not evaluated because the input of the models is not compatible.


https://pytorch.org/
https://github.com/microsoft/computervision-recipes
https://github.com/microsoft/computervision-recipes
https://github.com/pytorch/vision

(a) Without over-the-air attack, the action recognition network
classify the action correctly as juggling balls”.

(b) With over-the-air attack, the action recognition network
classify the action incorrectly as ”skydiving”.

Figure 2: Room sketched of our over-the-air attack setup.

5. Over-the-Air Real world demonstration

Our goal is to produce an adversarial universal flickering
attack, which will be implemented in the real world by an
RGB led light bulb in a room, causing miss-classification.
The desired scenario for the demonstration of the attack in-
cludes a video camera streaming a video filmed in a room
with a Wifi-controlled RGB led light bulb. A computer
sends over Wifi the adversarial RGB pattern to the bulb. A
figure performs actions in front of the camera. The hard-
ware specifications are as follows:

* Video camera: We used 1.3 MPixel RGB camera
streaming at 25 frames per second.

* RGB led light bulb: In order to applying the digitally
developed (univrsel or scene based) perturbation to the
scene, we use a RGB led light bulb’, controlled over
Wifi via Python api®, allowing to set RGB value at rel-
atively high speed.

e Computer: We use a computer to run the 13D action
classifier on the streaming video input. The model in-
put for prediction at time ¢ are all consecutive frames
between ¢ — 90 to ¢ (as described in I3D experiments
section). The model prediction frequency is set to 2Hz
(hardware performance limit). In addition, we use the
computer in order to control the smart led bulb.

* Acting figure: Performs the actions we would like to
classify and attack.

Figure 2 demonstrate our over-the-air attack setup, com-
bining the hardware mentioned above. Figure 2a demon-
strate the state when the attack is off (no adversarial pattern
is transmitted) and the video action recognition network

Thttps://www.mi.com/global/mi-led-smart-bulb-
essential/specs/
8https://yeeliqht.readthedocs.io/en/latest/

correctly classify the action, while Figure 2b demonstrate
the state when the attack is on (adversarial pattern is trans-
mitted) and the video action recognition network incorrectly
classify the action.

5.1. Over-the-Air Scene-based Flickering Attack

As described in the paper, in the scene-based approach
we assume a prior knowledge of the scene and the action.
In this approach we record a video without any adversarial
perturbation of the scene we would like to attack. Then we
develop a time-invariant digital attack for this recording as
described in the paper. Once we have the digital attack, we
transmit it to a “similar” scene in order to apply the attack
in the real world as can be found here’. For illustrating
the meaning of “similar” scene, we show in Figure 3 two
frames, where Figure 3a is a frame example from the video
(scene) which the attack was trained upon and Figure 3b
is a frame example from the scene on which the developed
attack was applied on. The relevant videos shows that even
though the positioning is different and the clothing are not
the same, the attack is still very effective even with a small
perturbation.
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Cartoon in Figure 2 designed by brgfx / Freepik”.
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(a) Frame example from “ironing” video used for training
over-the-air scene based attack.

(b) Frame example from “ironing” scene used for testing over-
the-air scene based attack.

Figure 3: Two frames from “’similar” scenes.
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Figure 4: Top: The adversarial perturbation of the RGB channels (color represents relevant channel) as a function of the
frame number at the case that 5; = 1 and 32 = 0 (D; minimization is preferred). Bottom: The adversarial perturbation of
the RGB channels as a function of the frame number at the case that 8; = 0 and 33 = 1 (D5 minimization is preferred). Top
and bottom graphs are presented in percents from the full scale of the image. Middle: The gradual change of the adversarial
pattern between the two extreme cases where 31 = 0 corresponds to the top graph and 5, = 1 corresponds to the bottom
graph. Color (stretched for visualization purposes) represents the RGB parameters of the adversarial pattern of each frame.



—— B1: 0.0 B,: 1.0
—— B1:0.13,:0.9
—— B1:0.23,:0.8
—— B1:0.3B2: 0.7
—— B1:0.48,: 0.6
—— B1:0.582: 0.5
—— B1: 0.6 B,: 0.4
—— B1:0.7B,: 0.3
0.65 B1: 0.8 B>: 0.2

— B1:0.9B,:0.1
: 1.0 B2: 0.0

Fageaosd
o
o
o
o

bud
]
vl

Figure 5: Convergence curve in probability-thickness-roughness space of an untargeted adversarial attack with different 51
and (5 parameters.
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Figure 6: Each one of the sub-figures shows the average fooling ratio of the attacked model (described in caption) with
different perturbations as a function of £,[%]. Each sub-figure combine three (two in I3D) main graph types, the dashed
graph represent the Universal flickering perturbation developed on the attacked model (§7'), the dotted graphs represent the
universal flickering attack developed upon other models (except for I3D) and the continues graphs represent the random

generated flickering perturbations (657, 6%, 0., 05 7 f1¢) Where the shaded filled region is & standard deviation around the
average Fooling ratio.



