
A. Supplementary Structure
In Section B of this supplementary material, we discuss

more details about our proposed network’s architecture and
we provide a diagram with all it’s details. In Section C we
provide more details about some Task Palette rules. In Sec-
tion D we provide additional visual results of our method.
In Section E we provide more details on implementational
details and hyperparameters used to conduct experiments.
In Section F we provide further analysis, mostly in depth de-
tails about the hyperparameter choices. Finally, in Section
G we discuss some limitations of our proposed method.

B. Architecture
The full CompositeTasking network diagram is pre-

sented in Figure 12. The encoder is the well known
ResNet34 network. The choice for ResNet34 trades-off be-
tween performance and memory/computational demands.
In the diagram, the encoder is divided into 5 blocks:
B1,...,B5. Each block Bi is a part of the encoder that takes
features of spatial size ( H

2i−1 ,
W

2i−1 ), and reduces the spatial
size to (H

2i ,
W
2i ). In the case of ResNet34, the spatial size is

reduced with a strided convolution.
The Task Palette Embedding E(T ) is calculated once

for each forward pass, with the task representation block
from Figure 12. Since all the task composition blocks use
the same embedding E(T ), a spatial pyramid of E(T ) is
created to be available in all spatial sizes (H

2i ,
W
2i ), where

i = 0, 1, ..., 5.

C. Task Palette Rules
Random mosaic rule R1r: The image is spatially divided
into four rectangles by intersecting a vertical and horizontal
line through a point c = (cx, cy). The point is chosen ran-
domly as cx ∼ U [W4 , 3

W
4 ], cy ∼ U [H4 , 3

W
4 ]. Each region

r ∈ {a, b, c, d} receives its task kr. In other words:

tyx =


ka, forx ≤ cx, y ≤ cy
kb, forx > cx, y ≤ cy
kc, forx ≤, y > cy

kd, forx > cx, y > cy

(6)

The specific tasks ka, ...kd, as well as c, can be changed
every time the Task Palette is requested from this rule.
The ruleR2 requests:

• Surface normals on pixels which belong to the se-
mantic classes: bottle, chair, dining table, potted plant,
sofa and tv monitor. In other word, this rule requests
surface normals on common household objects from
the dataset.

• Human body parts on pixels which belong to hu-
mans.

• Segmentation on pixels which belong to birds, horses,
cows, cats, dogs and sheep. In other words, this rule
requests segmentation on animals from the dataset.

• Saliency on aeroplanes, bicycles, boats, buses, cars,
motorbikes and trains. In other words, this rule re-
quests saliency on vehicles from the dataset.

• Edges everywhere else.

The ruleR3 requests:

• Surface normals on pixels which belong to chairs,
dining tables, sofas, bicycles, buses, cars, motorbikes
and trains. In other words, it requests surface normals
on some vehicles and some common household objects
from the dataset.

• Human body parts on pixels which belong to hu-
mans.

• Saliency on aeroplanes, boats, birds, horses, cows,
cats, dogs, sheep, bottles, potted plants and tv moni-
tors. In other words, it requests saliency on other ve-
hicles, other household objects and animals from the
dataset.

• Edges everywhere else.

The rule R3 is designed to be similar to rule R2. It uses
all the same tasks as ruleR2, except for semantic segmenta-
tion, which has been left out. The tasks of predicting edges
and human body parts are requested at the exact same lo-
cations. The tasks of surface normals, and saliency are re-
quested on a few classes where they are already requested
in ruleR2, but mostly on different classes.

D. Additional Qualitative Results
Here we provide more visual examples of the Compos-

iteTasking network’s capabilities
Random mosaics. Additional visual examples from the ex-
periment presented in Figure 6 are presented in Figure 13.
We can see that the network successfully predicts differ-
ent tasks simultaneously at different pixel locations, all dur-
ing the same forward pass. It shows the ability to sharply
change the task which is being predicted in different spatial
locations, with respect to the Task Palette T .
Single task predictions. Additional visual examples from
the experiments presented in Figure 7 are presented in Fig-
ure 14. Although the network is designed to be used in a
CompositeTasking fashion, here we see that our network
can make all task predictions successfully. In this case,
images are encoded only once followed by multiple task-
specific decodings.
Learning what to do where. Additional visual examples
from the experiments presented in Figure 8 are presented in
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Figure 12: CompositeTasking network architecture. Blue blocks process features unconditionally, while the green blocks process
features in a spatial task-conditioning manner. The network is composed out of an encoder and decoder. The decoder is composed only out
of task composition blocks and upsampling operations. The task composition block is depicted in the lower-right corner of this diagram,
while the upsampling operations are denoted with the blue rectangle containing the letter ”U”. The task composition block takes in a Task
Palette embedding E(T ), which is obtained using the task representation block, depicted in the lower-left part of this diagram.

Figure 15. We can see the networks ability to predict the
Task Palette. Using the predicted palette, the model suc-
cessfully makes CompositeTasking predictions.
Task Palette editing. Additional visual examples from the
experiments presented in Figure 9 are presented in Fig-
ure 16. We can see that a user can make any modification
to a given Task Palette, and obtain the respective Compos-
iteTasking prediction.
Breaking the rule. Additional visual examples from the ex-
periments presented in Figure 10 are presented in Figure 17.
We see the model’s ability to transfer the knowledge of the
rule it trained on (R2), to a new rule (R3). The performance
gets even better when fine-tuning is done on the new rule.
In the 1st row we can see that the model was able to pre-
dict relatively good surface normals for the motorbike, even
though it was never supervised to predict normals on motor-
bikes. After some fine-tuning on the new rule, it’s predic-
tions get even better. Notice how some almost flat surfaces
on the vehicle (which have the same surface orientation) get
more consistent normal predictions after fine-tuning. Since
the new rule R3 does not contain the task of semantic seg-
mentation anymore, that task is forgotten as can be seen in
the 3rd row. In the 4th row, human body parts result, ob-
tained using the ruleR3, is shown.

E. Implementation Details
The networks are trained on the train partition of the data

set and evaluated on the validation partition of the data set,
in absence of a test partition. The images are resized to

256 × 256 both for training and validation. When using
the rule R1r for training, a new center c and task region-
task assignments kr are sampled for every batch. Training
data was augmented using random horizontal flipping, shift-
ing, scaling, cropping, Gaussian noise, adaptive histogram
equalization, brightness change, sharpening, blurring, con-
trast change, hue change and saturation change. Flipping,
scaling and shifting were not used when predicting surface
normals.

Each distinct task k of the Task Palette T is embedded
into a latent vector w using the embedding network de-
picted in figure 12. The embedding network is a fully con-
nected neural network with 6 layers and leaky ReLU activa-
tions. To obtain an embedding for a specific task, its code zk
is given to the embedding network. The codes are vectors
of length 20K, where K is the number of tasks. The code
of task 1 is constructed by putting ones in the first 20 ele-
ments of the vectors, and zeroes everywhere else. For task
2, we have ones in the vectors positions 21...40, etc. This
way, the code vectors for different tasks will be orthogonal
to each other. The code vectors zk are also L2 normalized
to have unit length. Since the embedding E from Figure 3
is needed in the decoder in different spatial sizes, a pyramid
of downsized versions is prepared, along with the original
E . We use downsampling with bilinear interpolation.

The losses for each task k are computed independently
for every pixel belonging to that task in T , and averaged
to produce Lk(O,Yk, T ) from (4). For semantic segmenta-
tion and human body parts we use the focal loss [29] with
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Figure 13: Random mosaic compositions. CompositeTasking network predictions on requests with theR1r rule.

γ = 2, which was shown to be more effective in our setup
than standard cross-entropy loss. We use weighted cross-
entropy loss for edges. The weight for the positive class
(edges) is 0.95 while the weight or the negative class is
0.05, because the edges are usually present in a substanially
smaller portion of the image pixels. We use weighted cross-
entropy loss for saliency. The weights are calculated in each
batch as the inverse frequency of elements that belong to the
positive and negative class, normalized to sum up to 1.0.
For surface normals we use 1− CS(o, y), where CS is the
cosine similarity. The chosen loss weights λk are 3 for se-
mantic segmentation, 4 for human parts, 50 for edges, 8 for
saliency and 4 for surface normals. This provided the best
trade-off in experiments.

The exact 3D class anchors ai (see eq. 5) used for the
task of semantic segmentation and human body parts can
be found in Tables 5 and 6, respectively.

The model was optimized using the Adam optimization
algorithm, using weight decay of magnitude 0.00001. The
encoder is pre-trained on ImageNet , while the weights of
the decoder are randomly initialized. Because of that the en-
coder is optimized with a smaller learning rate of 0.00001,
while the decoder is optimized with the learning rate of
0.001. If the loss does not improve over the course of 12
epochs, the learning rates are multiplied by a factor of 0.3.
We use leaky ReLU as the activation function. Since the

PASCAL data set only provides the training and validation
partitions, the networks are trained for 100 epochs which
was shown to be enough for them to converge. They were
trained on Nvidia GPUs with either 12Gb or 16Gb of RAM
memory. A batch size of 10 was used.

F. Further Analysis

In this section, we present analysis that shed more light
on our choice of hyper-parameters. The average per-task
drop metric from Section 6.1 is also used here. Instead of
computing the metric with respect to a single task baseline,
now it is computed with respect to the performance of the
model with the chosen hyper-parameters. All the following
analysis are conducted by evaluating on the single task rule
S.

In the task composition blocks we use one shared con-
volution that processes the Task Palette embedding E(T ),
before it is converted to the affine transformation parame-
ters γ and β. In Table 7 we see that one shared convolution
was the best choice. If we use more shared convolutions,
we achieve a slightly worse performance with an increased
computational cost.

We used a regular convolution with kernel size 3 × 3 in
the task composition blocks of the decoder. In Table 8 we
see that a kernel size of 1 × 1 achieves worse performance
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Figure 14: Single task predictions. Even though our model is made for CompositeTasking, it can also make predictions on requests with
the S rule.



Image Task palette Prediction Predicted Palette Prediction

Figure 15: Learning what to do where. CompositeTasking network predictions with the learned Task Palette. A separate network is
learned to predict the Task Palette with 75.04% mIoU.

Image Task Palette Prediction Edited Palette Prediction

Figure 16: Task Palette editing. The Task Palette has been modified manually. A prediction of the CompositeTasking network is shown
before and after modification.
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(Trained R2) (Trained R2) (Tuned R2 → R3) (Tuned R2 → R3)

Figure 17: Breaking the rule. Predictions of the CompositeTasking network are show before and after fine-tuning from the old to the new
semantic rule. Because the rules are similar in a way, the model can already extrapolate even before fine-tuning.

Image Edges Segmentation Human parts Surface normals Saliency

Figure 18: Unsuccessful single task predictions.

then our choice.
We choose to do image-to-image translation by having 3

output channels. In Table 9 we observe that if we use more
output channels, there is no gain in predictive performance.

When a Task Palette embedding E(T ) is produced, it is
down-scaled in all spatial sizes that the decoder needs. In
Table 10 we compare our choice of bi-linear interpolation
to nearest neighbours. We choose the bi-linear interpolation

because it achieves slightly better results. This discrepancy
in performance may be caused due to the negligence of the
sampling theorem, i.e. ignoring that downsampled pixels
on the task boundary represent more than just one distinct
task [63]. Also, the nearest neighbours interpolation can be
used as a trade-off between slightly worse performance and
slightly faster computations. When applying nearest neigh-
bours interpolation there is no need to take into account all
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Figure 19: Unsuccessfully predicting what to do where.

Table 5: Class anchors ai for the task of semantic segmenta-
tion. These anchors define which part of the 3D output space cor-
responds to which class, based on the nearest neighbor principle.
They also define the RGB class colors used for all the presented
results.

Class id Class name x1 x2 x3

0 Background 0 0 0

1 Cat 0 0 64

2 Aeroplane 0 0 128

3 Chair 0 0 192

4 Potted plant 0 64 0

5 Sheep 0 64 128

6 Bicycle 0 128 0

7 Cow 0 128 64

8 Bird 0 128 128

9 Dining table 0 128 192

10 Sofa 0 192 0

11 Train 0 192 128

12 Boat 128 0 0

13 Dog 128 0 64

14 Bottle 128 0 128

15 Horse 128 0 192

16 TV monitor 128 64 0

17 Bus 128 128 0

18 Motorbike 128 128 64

19 Car 128 128 128

20 Person 128 128 192

the values of E(T ), but only the closest elements to the new
pixel centers.

In Table 11 we analyze what is the good number of fully
connected layers in the task representation block. We can
see that if we pick the number to be too small or too big,
there appears to be problems during learning. Especially
for a very big number of layers like 12, the network is hav-
ing a hard time converging. Having 6 and 9 layers gave
very similar results, and 6 was chosen simply because it is
computationally less demanding.

From Table 12 we can see that the model is pretty robust

Table 6: Class anchors ai for the task of human body parts.
These anchors define which part of the 3D output space corre-
sponds to which class, based on the nearest neighbor principle.
They also define the RGB class colors used for all the presented
results.

Class id Class name x1 x2 x3

0 Background 0 0 0

1 Head 0 0 255

2 Neck & torso 0 255 0

3 Upper arms 255 0 0

4 Lower arms 0 255 255

5 Upper legs 255 0 255

6 Lower legs 255 255 0

Table 7: Number of shared convolutions that process the Task
Palette embedding E(T ) in the task composition block.

# of convolutions Edge↑ SemSeg↑ Parts↑ Normals↓ Sal↑ ∆m%↓
1 (chosen) 68.60 62.45 52.59 16.93 67.81 0.00%

2 68.60 61.93 51.49 17.15 67.56 -0.92%
3 68.30 62.01 52.28 17.16 67.60 -0.68%

Table 8: Kernel size of regular convolutions inside the decoders
task composition blocks.

Kernel size Edge↑ SemSeg↑ Parts↑ Normals↓ Sal↑ ∆m%↓
3× 3 (chosen) 68.60 62.45 52.59 16.93 67.81 0.00%

1× 1 66.20 61.50 51.05 17.87 67.16 -2.89%

Table 9: Number of output channels of the model.
# of output channels Edge↑ SemSeg↑ Parts↑ Normals↓ Sal↑ ∆m%↓

3 (chosen) 68.60 62.45 52.59 16.93 67.81 0.00%
6 68.50 62.35 52.99 17.08 67.65 -0.13%
9 68.50 62.42 52.50 17.39 67.89 -0.59%

Table 10: Type of interpolation used during the Task Palette
embedding E(T ) downsampling.

Interpolation Edge↑ SemSeg↑ Parts↑ Normals↓ Sal↑ ∆m%↓
Bi-linear (chosen) 68.60 62.45 52.59 16.93 67.81 0.00%
Nearest neighbour 67.60 60.92 51.37 17.20 67.51 -1.65%

to choosing the number of channels of the Task Palette em-



Table 11: Number of fully connected layers in the task repre-
sentation block.

# of layers Edge↑ SemSeg↑ Parts↑ Normals↓ Sal↑ ∆m%↓
3 68.00 7.61 42.62 16.37 71.53 -19.77%

6 (chosen) 68.60 62.45 52.59 16.93 67.81 0.00%
9 68.70 62.29 52.18 16.95 67.43 -0.31%
12 52.80 36.46 13.69 67.60 44.93 -94.33%

Table 12: Number of channels of the Task Palette embedding
E(T ).

# of channels Edge↑ SemSeg↑ Parts↑ Normals↓ Sal↑ ∆m%↓
32 68.70 62.14 51.86 16.95 67.46 -0.47%
64 68.60 62.06 52.67 17.06 67.86 -0.23%

128 (chosen) 68.60 62.45 52.59 16.93 67.81 0.00%
256 68.40 60.36 51.53 17.11 67.35 -1.48%
512 1.40 11.22 4.53 30.87 18.64 -85.26%

Table 13: Encoder backbone.
Backbone Edge↑ SemSeg↑ Parts↑ Normals↓ Sal↑ ∆m%↓
ResNet18 67.40 60.40 49.25 17.25 66.87 -2.93%

ResNet34 (chosen) 68.60 62.45 52.59 16.93 67.81 0.00%
ResNet50 69.40 62.34 53.81 16.64 68.19 +1.12%

ResNet101 69.60 63.75 55.78 16.71 69.55 +2.69%

Table 14: Loss choice for the task of estimating surface nor-
mals.

Loss function Edge↑ SemSeg↑ Parts↑ Normals↓ Sal↑ ∆m%↓
cosine similarity (chosen) 68.60 62.45 52.59 16.93 67.81 0.00%

l1 distance 67.60 58.91 49.20 19.77 67.53 -6.15%

bedding E(T ). We chosen the number of channels which
gave the best performance.

In Table 13 we analyze what happens if we use encoder
backbones of different capacity. We can see a clear trend
from the table — as the backbone has more capacity (more
learnable parameters and computations) the predictive per-
formance of the model gets better. This was expected, and
it shows one possible way to improve the performance. The
choice for ResNet34 trades-off between performance and
memory/computational demands.

In Table 14 we analyze the choice of the loss function
for surface normals. As we can see, using cosine similarity
achieves much better results that the popular L1 loss. Also,
when using L1 loss, the values of the loss function over
epochs looked much more unstable than compared to using
cosine similarity.

In Table 15 we analyze the choice of γ in the focal loss
used in segmentation and human parts. We choose γ = 2
because that it achieved the best performance. Using γ = 0
is the same as using regular cross-entropy. Even though
regular cross-entropy was close in performance to using the
focal loss, when supervising with it the models often failed
to converge.

Table 15: Choice of parameter γ from focal loss used in seg-
mentation and human parts.

γ Edge↑ SemSeg↑ Parts↑ Normals↓ Sal↑ ∆m%↓
0 68.40 61.39 51.93 17.29 67.40 -1.19%
1 68.10 61.99 51.61 17.46 67.05 -1.52%

2 (chosen) 68.60 62.45 52.59 16.93 67.81 0.00%
3 68.70 61.60 51.39 17.06 67.88 -0.83%

Image Pred

Figure 20: Unsuccessful random mosaic composition predic-
tions.

G. Limitations
The proposed network has the ability to only predict one

task for each spatial location, during one forward pass. In
some cases, this could be a limitation. When making predic-
tions on high-level tasks, modern approaches predict many
different low-level tasks and fuse them in order to make the
final prediction. Although it is unnecessary to predict every
task everywhere – as laid out in our introduction –, some-
times it could certainly be necessary to perform more than
one task per each spatial location. As one example, lets
think about predicting where to turn the steering wheel in a
self-driving application. When a person is in the frame we
might want to detect them as a person (semantic segmenta-
tion), but we would also like to know the body part locations
and the depth at its location so we can reason about the per-
son’s pose, intended motion, and how close the person is to
the car.

Even in the case of our one-task-per-location model how-
ever, predictions are not always perfect. Now we will look
at some examples, where the model does not make good
predictions. In the 1st row of Figure 20, we can see that
the model fails to predict the body parts, and the seman-
tic segmentation correctly. This happens often when there
are many people in the scene, especially in strange circum-
stances like in this example. In the 2nd row of Figure 20,
we can see that the model segmented the dog as a human,
probably because it was unlikely that a dog is riding on a
boat in the dataset. In Figure 18, we can see that the model
is not able to predict the human parts successfully, because



the model recognises most of the human body as the mo-
torcycle as can be notices in the semantic segmentation pre-
diction. Finally, on Figure 19 we can see what happens if
the Task Palette is not predicted correctly. Here the model
is able to make a very good prediction given the appropriate
palette. But when the palette is predicted wrongly, probably
because of a lot of objects overlapping, the model makes a
bad prediction.


