
Improving Panoptic Segmentation at All Scales
Supplementary Material

Lorenzo Porzi, Samuel Rota Bulò, Peter Kontschieder
Facebook

{porzi,rotabulo,pkontschieder}@fb.com

Abstract

This document provides the following additional contri-
butions to our CVPR2021 submission:

• In Sec. A, we provide proof of results related to the
paper and the optimization algorithm for our new loss.

• In Sec. B we provide pseudo-algorithms for solving the
optimization problems described in the main paper.

• In Sec. C we discuss the panoptic evaluation metrics
used in the main paper.

• In Sec. D we provide a detailed breakdown of the train-
ing hyper-parameters used in our experiments.

• In Sec. E we provide additional ablation results related
to ISUS.

• In Sec. F we show qualitative results for all datasets
we consider in our experimental evaluation.

A. Proof of Results
Let ω0 = b1 − a1 and let ξ(ω) be the objective of (O1)

with first-order derivative

ξ′(ω) =
1

2
`′β

(
ω − ω̂

2

)
+

1

ω
`′β(log(ω)− log(ωP)) . (1)

The first-order derivative of the Huber loss is given by
`′β(x) = max(min(β−1x, 1),−1). We assume that ωP > 0
and ω0 > 0.

Proposition 1. If a strictly feasible local solution (δ?, ω?)
of (O2) exists, then δ? = δP and ω? = ωP.

Proof. Let δλ = λδP + (1 − λ)δ? and ωλ = λωP + (1 −
λ)ω?. By contradiction, assume that a strictly feasible local
solution (δ?, ω?) exists such that (δ?, ω?) 6= (δP, ωP). Then,

we expect d
dλϕ(δλ, ωλ)

∣∣
λ=0

= 0, where ϕ(δ, ω) denotes the
objective of (O2). However

d

dλ
ϕ(δλ, ωλ)

∣∣∣
λ=0

=
d

dλ
`β(δλ − δP)

∣∣∣
λ=0

+
d

dλ
`β(log(ωλ)− log(ωP))

∣∣∣
λ=0

= (δP − δ?)`′β(δ? − δP) +
ωP − ω?

ω?
`′β(log(ω

?)− log(ωP))

is negative because `′β(x) < 0 if x < 0 and `′β(x) > 0
if x > 0, the logarithm is an ordering-preserving mapping
and ω? > 0. This yields a contradiction thus proving the
result.

Proposition 2. ξ′(ω) < 0 for all 0 < ω < min{ω̂, ωP} and
ξ′(ω) > 0 for all ω > max{ω̂, ωP}.

Proof. For 0 < ω < ω̂ we have that `′β
(
ω−ω̂
2

)
< 0 and

for 0 < ω < ωP we have that `′β(log(ω) − log(ωP)) < 0.
Accordingly, ξ′(ω) < 0 for 0 < ω < min{ω̂, ωP}.

Similarly, for ω > ω̂, we have that `′β
(
ω−ω̂
2

)
> 0 and

for ω > ωP we have that `′β(log(ω) − log(ωP)) > 0. Ac-
cordingly, ξ′(ω) > 0 for ω > max{ω̂, ωP}.

Proposition 3. If max{ω̂, ωP} ≤ ω0 then ω0 is the solution
to (O1).

Proof. By Prop. 2, ξ′(ω) > 0 for all ω > max{ω̂, ωP}.
Accordingly, the same holds true for all ω ≥ ω0, which
implies that ξ(ω0) yields the lowest feasible objective value.

Proposition 4. A solution to (O1) exists in
[max{ω0,min{ω̂, ωP}},max{ω̂, ωP}] if ω0 ≤
max{ω̂, ωP}.

Proof. A feasible solution ω < max{ω0,min{ω̂, ωP}} ex-
ists only if ω0 ≤ ω < min{ω̂, ωP}. If this is the case,
ξ′(ω) < 0 holds in the latter interval by Prop. 2. Ac-
cordingly, for ω ≤ min{ω̂, ωP} the best objective is at-
tained at min{ω̂, ωP}. Similarly by Prop. 2, ξ′(ω) > 0 if
ω > max{ω̂, ωP} and, therefore, for ω ≥ max{ω̂, ωP} the



best objective is attained at max{ω̂, ωP}. Hence, a solution
to (O1) exists in the required interval.

Proposition 5. If max{ω0, ω̂} < ωP then a solution to (O1)
exists in [max{ω0, ω̂}, ωP] and there ξ′ is strictly increas-
ing.

Proof. For all ω̂ ≤ ω < ω′ we have that 0 ≤ `′β(
ω−ω̂
2 ) ≤

`′β(
ω′−ω̂

2 ). Moreover, for all 0 < ω < ω′ ≤ ωP, both
`′β(log(ω) − log(ωP)) ≤ `′β(log(ω

′) − log(ωP)) ≤ 0 and
1
ω > 1

ω′ > 0 hold, which imply 1
ω `
′
β(log(ω) − log(ωP)) <

1
ω′ `
′
β(log(ω

′) − log(ωP)) ≤ 0. It follows that ξ′(ω) <
ξ′(ω′) holds in the required interval.

Proposition 6. η(ω) = 1
ω `
′
β(log(ω)− log(ωP)) is

• strictly increasing in (0, emin{β,1}ωP], and

• strictly decreasing for ω ≥ eωP.

Proof. η(ω) is strictly increasing for 0 < ω < e−βωP
because in this case η(ω) = − 1

ω and strictly decreas-
ing for ω > ωPe

β because in this case η(ω) = 1
ω . For

e−βωP ≤ ω ≤ eβωP we have η(ω) = 1
ωβ (log(ω)−log(ωP))

and
η′(ω) =

1

ω2β
[1− log(ω) + log(ωP)] .

Since η′(e−βωP) > 0, η′(eβωP) < 0 and η′(ω) = 0 only at
ω = eωP, it follows by continuity of η′ that η′(ω) > 0 for
ω < eωP and η′(ω) < 0 for ω > eωP. Accordingly, η(ω) is
strictly increasing in [e−βωP, e

min{β,1}ωP]. Since the same
holds for 0 < ω < e−βωP as shown before, by continu-
ity of η, we conclude that η(ω) is strictly increasing along
the whole interval (0, emin{β,1}ωP]. Similarly, we have that
η(ω) is strictly decreasing in [eωP, e

βωP] and for ω > eβωP
as shown before. Hence, by continuity of η, we conclude
that η(ω) is strictly decreasing for ω ≥ eωP.

Proposition 7. If max{ω0, ωP} < ω̂ then a solution to (O1)
is either ω0 or ω̂, or it belongs to one of the following inter-
vals:

(i) J1 = [max{ω0, ωP},min{emin{β,1}ωP, ω̂}],

(ii) J2 = [max{ω0, 2
√
β, ω̂ − 2β, eβωP}, ω̂],

(iii) J3 = [max{ω0, ω̂ − 2β, eωP},min{eβωP, ω̂}] if ω̂ ≤
4
√
2

(iv) J4 = [max{ω0, ω̂ − 2β, eωP},min{eβωP, ω̂, ν1}] if
ω̂ > 4

√
2,

(v) J5 = [max{ω0, ω̂ − 2β, eωP, ν2},min{eβωP, ω̂}] if
ω̂ > 4

√
2,

where ν1,2 = ω̂
4

(
1±

√
1− 32

ω̂2

)
.

Moreover, ξ′ is strictly increasing in (i)-(ii) and σ(ω) =
ωξ′(ω) is strictly increasing in (iii)− (v).

Proof. By Prop. 4 a solution to (O1) exists in I =
[max{ω0, ωP}, ω̂]. We partition I into sections where ξ′ or
σ are either strictly increasing or strictly decreasing. We
work by cases:

• J1. In this interval `′β(
ω−ω̂
2 ) is increasing in ω and

η is strictly increasing by Prop. 6. Hence, ξ′(ω) =
1
2`
′
β(
ω−ω̂
2 ) + η(ω) is strictly increasing as well.

• [max{ω0, eωP}, ω̂ − 2β]. In this interval `′β(
ω−ω̂
2 ) is

constant and η is strictly decreasing by Prop. 6. Hence,
ξ′ is strictly decreasing as well.

• [max{ω0, ω̂ − 2β, eβωP}, ω̂]. In this interval, ξ′(ω) =
1
4β (ω − ω̂) + 1

ω and ξ′′(ω) = 0 holds only in the
feasible point ω = 2

√
β, while ξ′′(ω) < 0 for 0 <

ω < 2
√
β and ξ′′(ω) > 0 for ω > 2

√
β. Ac-

cordingly ξ′(ω) is strictly decreasing in the interval
[max{ω0, ω̂ − 2β, eβωP},min{2

√
β, ω̂}] and strictly

increasing in the interval J2.

• J3. In this interval, ξ′(ω) = 1
4β (ω− ω̂)+

1
ωβ (log(ω)−

log(ωP)) and by setting σ′(ω) = 0 we find at most
two solutions, namely ν1,2, which are distinct and real
for ω̂ > 4

√
2. Both solutions might potentially be-

long to the interval under consideration. The sign
of σ′(ω) is negative for ν1 < ω < ν2 and posi-
tive for ω < ν1 and ω > ν2. Accordingly σ(ω) is
strictly increasing in the intervals J4 and J5, while
it is strictly decreasing in the interval [max{ω0, ω̂ −
2β, eωP, ν1},min{eβωP, ω̂, ν2}]. If ω̂ ≤ 4

√
2 then

σ′(ω) ≥ 0 in the whole interval J3, with equality
only if ω̂ = 4

√
2 and ω = ν1 = ν2. Accordingly,

if ω̂ ≤ 4
√
2 we have that σ(ω) is strictly increasing in

J3.

Since σ(ω) and ξ′(ω) share the same sign, given an in-
terval J where ξ′ or σ is strictly decreasing, we have one of
the following cases: a) ξ′ is strictly positive, b) ξ′ is strictly
negative or c) ξ′ transitions once from a positive to a nega-
tive sign. In all three cases, a solution to (O1) cannot exist in
the interior of J but can be at most at one endpoint of J . For
the same reason, no solution can be at the junction of two
intervals where ξ′ or σ are strictly decreasing. Hence, the
endpoint has to be either an endpoint of I or be in common
with an interval where either ξ′ or σ are strictly increasing,
which proves the result.

B. Optimization Algorithms

In this section we provide the optimization algorithms
used to solve (O2) and (O1), which exploit the theoretical
results given in Sec. A.



Algorithm 1 Solves the optimization problem (O1).

1: function SOLVE O1(ωP, ω̂, a1, b1)
2: ω0 = b1 − a1
3: S = {ω0} . Used to collect potential solutions
4: if max{ω0, ω̂} < ωP then . Prop. 5
5: return FIND MIN([max{ω0, ω̂}, ωP], ξ′)
6: else if max{ω0, ωP} < ω̂ then . Prop. 7
7: S = S ∪ {ω̂, FIND MIN(J1, ξ′), FIND MIN(J2, ξ′)}
8: if ω̂ ≤ 4

√
2 then

9: S = S ∪ {FIND MIN(J3, σ)}
10: else
11: S = S ∪ {FIND MIN(J4, σ), FIND MIN(J5, σ)}
12: end if
13: end if
14: return arg minω∈S ξ(ω)
15: end function

Algorithm 2 Solves the optimization problem (O2).

1: function SOLVE O2(δP, ωP, a2, b2)
2: ω̂1 = 2(δP − a2)
3: ω̂2 = 2(b2 − δP)
4: if ωP ≥ max{ω̂1, ω̂2} then
5: return (δP, ωP)
6: end if
7: ω1 =SOLVE O1(ωP, ω̂1, a2, b2)
8: ω2 =SOLVE O1(ωP, ω̂2, a2, b2)
9: if ξ(ω1) ≤ ξ(ω2) then

10: return (a2 +
ω1

2 , ω1)
11: else
12: return (b2 − ω2

2 , ω2)
13: end if
14: end function

Algorithm for (O2). Alg. 2 provides a solution to the
optimization problem (O2). The idea of the algorithm is
sketched also in Sec. 2.4 of the main paper. The global, un-
constrained solution to (O2) is attained at (δP, ωP). Accord-
ingly, if this solution is feasible it is also the global solution
to the constrained version of the problem (line 5). If it’s not
feasible, we have two options, the solution is in the interior
of the feasible set, or at the boundary. However, by Prop. 1
the former case is not possible, because the only solution
would be the one we excluded already, namely (δP, ωP).
Hence, the solution has to lie at the boundary of the fea-
sible set. Since we have only two constraints, we can apply
a brute force approach, and explore two cases where we as-
sume that the solution activates the first constraint (line 7)
or the second one (line 8). In both cases, we boil down to
solving an instance of the optimization problem (O1) where
ω̂ = 2(δP−a2) and ω̂ = 2(b2− δP), respectively. The solu-
tion to each of those problems, denoted by ω1 and ω2 in the

Algorithm 3 Finds the minimum of an objective ξ in a given
interval [u, v] by leveraging an increasing, continuous func-
tion ϕ, whose sign agrees with the sign of ξ′.

1: function FIND MIN([u, v], ϕ)
2: if ϕ(u) ≥ 0 then
3: return u
4: else if ϕ(v) ≤ 0 then
5: return v
6: else
7: m = u+v

2
8: if v − u < ε then . ε is a tolerance
9: return m

10: else if ϕ(m) ≥ 0 then
11: return FIND MIN([u,m], ϕ)
12: else
13: return FIND MIN([m, v], ϕ)
14: end if
15: end if
16: end function

algorithm, is given by applying Alg. 1, which is discussed
later. Among those two solutions, we retain the one mini-
mizing the objective of (O1), where the objective is denoted
by ξ in the algorithm. If ω1 is the best one then the solution
to (O2) is given by (δ1, ω1) in line 10, where δ1 = a2 +

ω1

2
is obtained by substituting ω1 in the first constraint. Oth-
erwise, the solution is given by (δ2, ω2) in line 12, where
δ2 = b2 − ω2

2 is obtained similarly from the second con-
straint.

Algorithm for (O1). Alg. 1 provides a solution to the
optimization problem (O1). According to Prop. 3, if
max{ω̂, ωP} ≤ ω0 then ω0 is the solution. Indeed, in this
case we return ω0 in line 14 since it is the only element of S.
If condition in line 4 is hit, then by Prop. 5 we can search a
solution in the interval [max{ω0, ω̂}, ωP] by leveraging the
monotonicity of ξ′. We do so by exploiting Alg. 3 in line 5,
which will be discussed later. If condition in line 6 is hit
instead, according to Prop. 7, we need to search for the best
solution within the intervals Ji with i ∈ {1, . . . , 5} even-
tually satisfying the given conditions. Moreover, we need
to include in the pool also ω0 and ω̂. The search over each
interval Ji is performed via Alg. 3, by leveraging the mono-
tonicity of ξ′ or σ. All potential solutions are collected into
S and the best one in terms of the objective is retained in
line 14.

Alg. 3. Finds the minimum of an objective ξ in a given
interval [u, v] by leveraging an increasing, continuous func-
tion ϕ, whose sign agrees with the sign of ξ′. This can be
done by searching the element in [u, v] that is the closest
one to a zero of ϕ. Since the function is increasing, if ϕ(u)



is non-negative then the closest element to a zero is u, while
if ϕ(v) is non-positive then the closest element is v. Other-
wise, we perform a dichotomic search on the half-interval
where we have discording signs of ϕ at the extremes until
we reach the zero with sufficient accuracy.

C. Evaluation Metrics

Panoptic Quality (PQ), originally described in [1], is
the most commonly adopted metric to evaluate panoptic
segmentation results. We report it together with seman-
tic Intersection over Union (mIoU) and mask mean Aver-
age Precision (mAP), in order to detailedly measure our
network’s segmentation and detection performance, respec-
tively. Some recent works [2, 3] have proposed alternatives
to PQ aimed at highlighting different aspects of the panop-
tic predictions, or overcoming potential pitfalls of PQ. Note
that we denote by PQth and PQst the PQ scores computed
only on thing and stuff classes, respectively.1

Parsing Covering. PQ assigns equal importance to all
image segments, a choice which is not always desirable, e.g.
autonomous driving systems might care more about objects
closer to the vehicle, and thus appear bigger in the image,
than far away ones. Motivated by this observation, [3] pro-
posed Parsing Covering (PC) as an alternative panoptic met-
ric that weights image segments in proportion to their areas.
Since our CABB loss focuses on improving detection results
of large objects, PC helps highlighting its impact.

PQ†. Porzi et al. [2] discussed a potential limitation of
PQ, as it handles all classes in a uniform way, imposing a
hard 0.5 threshold on IoUs of both things and stuff. While
this is strictly necessary to obtain a unique matching be-
tween thing segments and their respective ground truth, it
can result in strong over-penalization of stuff segments. To
solve this, they propose PQ† as a direct modification of PQ
which avoids the thresholding issue, giving a more faithful
representation of the quality of stuff predictions.

D. Training hyper-parameters

All our networks are trained using stochastic gradient
descent with momentum 0.9 and weight decay 10−4. The
training schedule starts with a warm-up phase, where the
learning rate is increased linearly from 0 to a value lr0 in
the first 200 training steps. Then, the learning rate follows
a linear decay schedule given by lri = lr0(1− i

#steps ), where
lri is the value at training step i. In all of our experiments
we augment the data with random horizontal flipping, and
in those involving ISUS we fix the maximum “things” scale

1A similar notation is also used for PC.

augmentation range to rth = [0.25, 4]. The scale augmenta-
tion range used in CUS always matches the rst of the corre-
sponding ISUS experiments on the same dataset. In the fol-
lowing we list the dataset-specific hyper-parameters. Note
that all schedules used for a particular dataset result in ap-
proximately the same number of training iterations.

Mapillary Vistas. All MVD experiments use a “stuff”
scale augmentation range of rst = [0.8, 1.25]. When utiliz-
ing full images we set s0 = 1344, lr0 = 0.02, and we train
for 75 epochs on batches including a single image per GPU.
In all other experiments we set s0 = 2400, lr0 = 0.04, take
crops of size 1024 × 1024, and train for 300 epochs using
batches of 4 crops per GPU.

Indian Driving Dataset. In the IDD experiments we fix
s0 = 1080 and rst = [0.5, 2]. We train for 75 epochs with
batch size of 1 per GPU and lr0 = 0.02 when using full
images, and for 600 epochs with batch size of 8 per GPU,
lr0 = 0.08 and crop size 512× 512 when using crops.

Cityscapes. Finally, in the Cityscapes experiments we
pre-train our networks on Mapillary Vistas, and fix s0 =
1024 and rst = [0.5, 2]. When using full images, we train
for 20 epochs with batch size of 1 per GPU and lr0 = 0.01.
When using crops, we train for 150 epochs with batch size
of 8 per GPU, lr0 = 0.04 and crop size 512× 512.

E. Additional ISUS ablations
In order to validate the efficacy of ISUS, we perform an

additional ablation experiment where we train our CROP
network variant (with CUS) using standard scale augmen-
tation in the range [0.25, 4]. Note that this is the same range
as the rth used in the ISUS experiments. The aim here is to
verify whether the instance-aware scale sampling in ISUS
has any impact on detection compared to a uniform sam-
pling in the same range. When training on MVD, we ob-
tain the following results: PQth=42.3, mAP=22.8. Compare
these to the corresponding CROP + ISUS results: PQth=43.1,
mAP=23.0.

F. Qualitative Results
In the following we visualize sample outputs of our best

performing CROP + CABB + ISUS networks on Mapillary
Vistas (Fig. 1), Cityscapes (Fig. 2) and the Indian Driving
Dataset (Fig. 3).

References
[1] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten

Rother, and Piotr Dollár. Panoptic segmentation. In (CVPR),
pages 9404–9413, 2019. 4



Figure 1: Sample outputs of CROP + CABB + ISUS on Mapillary Vistas. Best viewed on screen.

Figure 2: Sample outputs of CROP + CABB + ISUS on Cityscapes. Best viewed on screen.

[2] Lorenzo Porzi, Samuel Rota Bulò, Aleksander Colovic, and
Peter Kontschieder. Seamless scene segmentation. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, 2019. 4

[3] Tien-Ju Yang, Maxwell D. Collins, Yukun Zhu, Jyh-Jing
Hwang, Ting Liu, Xiao Zhang, Vivienne Sze, George Papan-



Figure 3: Sample outputs of CROP + CABB + ISUS on the Indian Driving Dataset. Best viewed on screen.

dreou, and Liang-Chieh Chen. Deeperlab: Single-shot image
parser. CoRR, abs/1902.05093, 2019. 4


