
A functional approach to rotation equivariant non-linearities for Tensor Field
Networks (Supplementary material).

Adrien Poulenard
Stanford University

padrien@stanford.edu

Leonidas J. Guibas
Stanford University

guibas@cs.stanford.edu

We provide a proof of theorem (3.1), we show the equiv-
ariance of the exact form of the non linearity defined in
equation (16). More precisely, it commutes with the Wigner
matrix.

Theorem (3.1). Our continuous non linearity ξ(•) is
SO(3) equivariant. That is, for any rotation R ∈ SO(3)
we have ξ(R.f)`i:c = D`(R)ξ(f)`i:c.

Proof. We have:

ξ(R.f)`i:c :=

∫
S2
ξ(F+(R.f)ic(x))Y

`(x)dx

=

∫
S2
ξ

(
`max∑
`=0

〈D`(R)f `i:c, Y
`(x)〉

)
Y `(x)dx

=

∫
S2
ξ

(
`max∑
`=0

〈f `i:c, D`(R)>Y `(x)〉

)
Y `m(x)dx

=

∫
S2
ξ

(
`max∑
`=0

〈f `i:c, Y `(R−1x)〉

)
Y `(x)dx

=
t=R−1x

∫
S2
ξ

(
`max∑
`=0

〈f `i:c, Y `(t)〉

)
Y `(Rt)dt

=

∫
S2
ξ

(
`max∑
`=0

〈f `i:c, Y `(t)〉

)
D`(R)Y `(t)dt

= D`(R)ξ[f ]`i:c

which concludes the proof.

We provide a proof of theorem (3.2), we show that the
discrete version of our non linearity defined in equation (19)
is equivariant w.r.t. the rotation group of the sampling.

Theorem (3.2). Our discrete non linearity ξ[•] is equiv-
ariant w.r.t. the symmetry group of the sampling. That is,
for any rotation R ∈ SO(3) in the symmetry group of the
sampling P we have ξ[R.f ]`i:c = D`(R)ξ[f ]`i:c.

Proof. Let P = {p1, . . . , pk} ⊂ S2 be our discrete sam-
pling of the unit sphere and S = {R1, . . . , Rm} ⊂ SO(3)

its symmetry group. The action of S on P is given by
permutations, that is, for all j there exist a permutation
σj ∈ Sk such that for all i, Rjpi = pσj(i). We have:

F+(Rj .f)vic := F+(Rj .fv:c)(pi)

=
∑
`,m

〈D`(Rj)f
`
v:c, Y

`(pi)〉

=
∑
`,m

〈f `v:c, D`(Rj)
>Y `(pi)〉

=
∑
`,m

〈f `v:c, D`(Rj)
>Y `(pi)〉

=
∑
`,m

〈f `v:c, Y `(pσ−1(i))〉

= F+(f)v,σ−1
j (i),c

Replacing F+(Rj .f)vic by F+(f)v,σ−1
j (i),c in the expres-

sion of ξ[Rj .f ]`i:c we obtain:

ξ[Rj .f ]
`
i:c

=
4π

k

k∑
i=1

ξ ◦ F+(Rj .f))vicY
`(pi)

=
4π

k

k∑
i=1

F(ξ ◦ F+(f))v,σ−1
j (i),cY

`(pi)

=
4π

k

k∑
i=1

F(ξ ◦ F+(f))vicY
`(pσj(i))

=
4π

k

k∑
i=1

F(ξ ◦ F+(f))vicY
`(Rjpi)

=
4π

k

k∑
i=1

F(ξ ◦ F+(f))vicD
`(Rj)Y

`(pi )

= D`(Rj)ξ[f ]
`
i:c

which concludes the proof.

1



We propose to measure the impact of the number of sam-
ples of the Fibonacci sampling on the equivariance of our
non linearity for different types of features. For any func-
tion f over the sphere expressed in the SH basis we can
compute the standard deviation of the non discretized non-
linearity ξ applied to f under rotations of the sphere sam-
pling. Ideally we would like to average this standard devi-
ation over the unit norm functions but, this infeasible as it
would require sampling a high dimensional space. Instead,
for each ` we compute the average standard deviation of the
image of the degree ` spherical harmonics. For any k ∈ N∗
we denote by pk = {pk1 , . . . , pkk} ⊂ S2 the Fibonacci sam-
pling of the unit sphere with k samples. For each type ` and
m ∈ J−`, `K and for any rotation matrix R we define:

f `m(R, pk) =

`max⊕
q=0

4π

k

k∑
i=1

ξ(Y `m(Rpki ))Y
k(Rpi)

ideally f `m(R, p) should be invariant w.r.t. R. We compute
its standard deviation w.r.t. R to measure the equivariance
error:

ER[f `m(R, p)] :=

∫
SO(3)

f `m(R, p)dR

Var(`, k) :=
1

2`+ 1

∑̀
m=−`

VarR(f
`
m(R, pk)m)

:=
1

2`+ 1

∑̀
m=−`

∫
SO(3)

‖f `m(R, p)− ER[f `m(R, p)]‖22dR

In practice we approximate the integrals by averaging over
10000 random rotations. We report the standard variation
σ w.r.t. the degree of spherical harmonics ` and number
of samples k in Figure (1). As expected, we observe that
the error is decreasing with the number of samples. Also
higher frequency spherical harmonics produces higher error
but, we observe a sharper decrease of the error initially for
higher frequencies as we increase the number of samples.

Figure 1. Average standard deviation σ(`, k) (y-axis) of our non
linearity applied to degree ` spherical harmonics under rotation of
the Fibonacci sampling w.r.t. the number k of samples (x-axis).
We used `max = 4.

2


