

A functional approach to rotation equivariant non-linearities for Tensor Field Networks (Supplementary material).

Adrien Poulenard
Stanford University
padrien@stanford.edu

Leonidas J. Guibas
Stanford University
guibas@cs.stanford.edu

We provide a proof of theorem (3.1), we show the equivariance of the exact form of the non linearity defined in equation (16). More precisely, it commutes with the Wigner matrix.

Theorem (3.1). *Our continuous non linearity $\xi(\bullet)$ is $\text{SO}(3)$ equivariant. That is, for any rotation $R \in \text{SO}(3)$ we have $\xi(R.f)_{i:c}^\ell = D^\ell(R)\xi(f)_{i:c}^\ell$.*

Proof. We have:

$$\begin{aligned} \xi(R.f)_{i:c}^\ell &:= \int_{\mathcal{S}_2} \xi(\mathcal{F}^+(R.f)_{ic}(x)) Y^\ell(x) dx \\ &= \int_{\mathcal{S}_2} \xi \left(\sum_{\ell=0}^{\ell_{\max}} \langle D^\ell(R) f_{i:c}^\ell, Y^\ell(x) \rangle \right) Y^\ell(x) dx \\ &= \int_{\mathcal{S}_2} \xi \left(\sum_{\ell=0}^{\ell_{\max}} \langle f_{i:c}^\ell, D^\ell(R)^\top Y^\ell(x) \rangle \right) Y_m^\ell(x) dx \\ &= \int_{\mathcal{S}_2} \xi \left(\sum_{\ell=0}^{\ell_{\max}} \langle f_{i:c}^\ell, Y^\ell(R^{-1}x) \rangle \right) Y^\ell(x) dx \\ &\stackrel{t=R^{-1}x}{=} \int_{\mathcal{S}_2} \xi \left(\sum_{\ell=0}^{\ell_{\max}} \langle f_{i:c}^\ell, Y^\ell(t) \rangle \right) Y^\ell(Rt) dt \\ &= \int_{\mathcal{S}_2} \xi \left(\sum_{\ell=0}^{\ell_{\max}} \langle f_{i:c}^\ell, Y^\ell(t) \rangle \right) D^\ell(R) Y^\ell(t) dt \\ &= D^\ell(R) \xi[f]_{i:c}^\ell \end{aligned}$$

which concludes the proof. \square

We provide a proof of theorem (3.2), we show that the discrete version of our non linearity defined in equation (19) is equivariant w.r.t. the rotation group of the sampling.

Theorem (3.2). *Our discrete non linearity $\xi[\bullet]$ is equivariant w.r.t. the symmetry group of the sampling. That is, for any rotation $R \in \text{SO}(3)$ in the symmetry group of the sampling P we have $\xi[R.f]_{i:c}^\ell = D^\ell(R)\xi[f]_{i:c}^\ell$.*

Proof. Let $P = \{p_1, \dots, p_k\} \subset \mathcal{S}_2$ be our discrete sampling of the unit sphere and $S = \{R_1, \dots, R_m\} \subset \text{SO}(3)$

its symmetry group. The action of S on P is given by permutations, that is, for all j there exist a permutation $\sigma_j \in \mathfrak{S}_k$ such that for all i , $R_j p_i = p_{\sigma_j(i)}$. We have:

$$\begin{aligned} \mathcal{F}^+(R_j.f)_{vic} &:= \mathcal{F}^+(R_j.f_{v:c})(p_i) \\ &= \sum_{\ell,m} \langle D^\ell(R_j) f_{v:c}^\ell, Y^\ell(p_i) \rangle \\ &= \sum_{\ell,m} \langle f_{v:c}^\ell, D^\ell(R_j)^\top Y^\ell(p_i) \rangle \\ &= \sum_{\ell,m} \langle f_{v:c}^\ell, D^\ell(R_j)^\top Y^\ell(p_i) \rangle \\ &= \sum_{\ell,m} \langle f_{v:c}^\ell, Y^\ell(p_{\sigma_j^{-1}(i)}) \rangle \\ &= \mathcal{F}^+(f)_{v,\sigma_j^{-1}(i),c} \end{aligned}$$

Replacing $\mathcal{F}^+(R_j.f)_{vic}$ by $\mathcal{F}^+(f)_{v,\sigma_j^{-1}(i),c}$ in the expression of $\xi[R_j.f]_{i:c}^\ell$ we obtain:

$$\begin{aligned} \xi[R_j.f]_{i:c}^\ell &= \frac{4\pi}{k} \sum_{i=1}^k \xi \circ \mathcal{F}^+(R_j.f)_{vic} Y^\ell(p_i) \\ &= \frac{4\pi}{k} \sum_{i=1}^k \mathcal{F}(\xi \circ \mathcal{F}^+(f))_{v,\sigma_j^{-1}(i),c} Y^\ell(p_i) \\ &= \frac{4\pi}{k} \sum_{i=1}^k \mathcal{F}(\xi \circ \mathcal{F}^+(f))_{vic} Y^\ell(p_{\sigma_j(i)}) \\ &= \frac{4\pi}{k} \sum_{i=1}^k \mathcal{F}(\xi \circ \mathcal{F}^+(f))_{vic} Y^\ell(R_j p_i) \\ &= \frac{4\pi}{k} \sum_{i=1}^k \mathcal{F}(\xi \circ \mathcal{F}^+(f))_{vic} D^\ell(R_j) Y^\ell(p_i) \\ &= D^\ell(R_j) \xi[f]_{i:c}^\ell \end{aligned}$$

which concludes the proof. \square

We propose to measure the impact of the number of samples of the Fibonacci sampling on the equivariance of our non linearity for different types of features. For any function f over the sphere expressed in the SH basis we can compute the standard deviation of the non discretized non-linearity ξ applied to f under rotations of the sphere sampling. Ideally we would like to average this standard deviation over the unit norm functions but, this infeasible as it would require sampling a high dimensional space. Instead, for each ℓ we compute the average standard deviation of the image of the degree ℓ spherical harmonics. For any $k \in \mathbb{N}^*$ we denote by $p^k = \{p_1^k, \dots, p_k^k\} \subset \mathcal{S}_2$ the Fibonacci sampling of the unit sphere with k samples. For each type ℓ and $m \in \llbracket -\ell, \ell \rrbracket$ and for any rotation matrix R we define:

$$f_m^\ell(R, p^k) = \bigoplus_{q=0}^{\ell_{\max}} \frac{4\pi}{k} \sum_{i=1}^k \xi(Y_m^\ell(Rp_i^k)) Y^k(Rp_i)$$

ideally $f_m^\ell(R, p)$ should be invariant w.r.t. R . We compute its standard deviation w.r.t. R to measure the equivariance error:

$$\begin{aligned} \mathbb{E}_R[f_m^\ell(R, p)] &:= \int_{\mathrm{SO}(3)} f_m^\ell(R, p) dR \\ \mathrm{Var}(\ell, k) &:= \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} \mathrm{Var}_R(f_m^\ell(R, p)_m) \\ &:= \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} \int_{\mathrm{SO}(3)} \|f_m^\ell(R, p) - \mathbb{E}_R[f_m^\ell(R, p)]\|_2^2 dR \end{aligned}$$

In practice we approximate the integrals by averaging over 10000 random rotations. We report the standard variation σ w.r.t. the degree of spherical harmonics ℓ and number of samples k in Figure (1). As expected, we observe that the error is decreasing with the number of samples. Also higher frequency spherical harmonics produces higher error but, we observe a sharper decrease of the error initially for higher frequencies as we increase the number of samples.

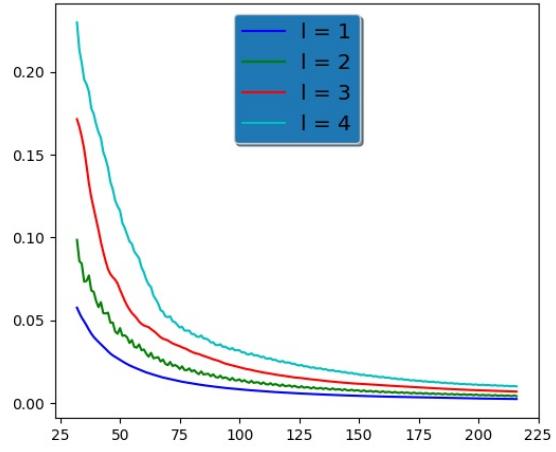


Figure 1. Average standard deviation $\sigma(\ell, k)$ (y-axis) of our non linearity applied to degree ℓ spherical harmonics under rotation of the Fibonacci sampling w.r.t. the number k of samples (x-axis). We used $\ell_{\max} = 4$.