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In this supplementary material document, we provide
some details on extending our multi-scale feature fusion
method to students. Furthermore, we provide additional ex-
perimental results on using

• Slimmed backbones and high-resolution students
• Different input resolutions during inference
• Multi-scale fusion students with slimmed backbones,

as well as

• Training details for 3× training schedule
• Visualization results.

A. Multi-Scale Feature Fusion for Students
As shown in Table 4 of the main paper, it is still relatively

challenging for the improved low-resolution student models
to detect small objects. This is caused by the loss of fine vi-
sual details in the low-resolution input images. To counter-
act this problem, we extend cross feature-level fusion mod-
ule introduced in Sec. 3.2 to combine two or more students
with varying input resolutions and model complexities. The
loss of visual details within a low-resolution student can be
compensated by dynamically fusing its pyramidal features
with the features from another high-resolution student. Due
to the high computational requirements of processing high-
resolution input images, we let the high-resolution student
use a network architecture more compact and lightweight
than the low-resolution student’s. This strategy allows us to
achieve a good balance between model efficiency and detec-
tion performance. The results of various multi-scale fusion
students are provided in Table 7 of the main paper.

B. Slimmed Backbones and High-resolution
Students

Table 1 shows the comprehensive results on using
slimmed ResNet-50 backbones1 [6]. Even when using a

†Equal contribution.
1As mentioned in the main paper, we do not adopt Slimmable train-

ing [6] for the detection models. We merely initialize the detection mod-

quarter of the original network width, the performance of
the low-resolution student still reaches 30.4 AP which is
reasonably good. This model’s backbone runs at merely 1

64
of the original/vanilla model’s backbone FLOPS. Addition-
ally, we demonstrate in this table that the strong teachers
trained with our approach can also be used to improve the
performance of high-resolution students remarkably well,
enabling them to match the performance of the multi-scale
fusion teachers (H&L) while merely requiring the compu-
tation costs of single-resolution backbones.

C. Inference at Different Input Resolutions
Table 2 shows the performance of student when perform-

ing inference across a wide range of different input resolu-
tions. It can be seen that the student models trained with
our multi-scale aligned distillation framework perform rea-
sonably well even in the extremely low-resolution regime.

D. Multi-scale Fusion Students with Slimmed
Backbones

The cross feature-level fusion module introduced in
Sec. 3.2 (main paper) can also be applied to the student
models. The loss of fine visual details in a low-resolution
student can be compensated by dynamically fusing its pyra-
midal features with the features from another small-width
high-resolution backbone. In Table 3, we show the per-
formance of several such backbone combinations for the
multi-scale fusion students that requires less computation
costs (FLOPS) than the full-width high-resolution model.
It can be seen that the performance on small-sized objects,
APS

S has been improved materially compared to the models’
single-low-resolution counterparts in Table 1.

With 0.50× width for high-resolution and 1.00× width
for low-resolution backbones, the student model (first row)
achieves 41.4 AP which is comparable with 41.3 AP of
the 0.75×-width high-resolution student (0.75×; S; H)
in Table 1. These two models have comparable back-

els with different-width backbones pretrained using Slimmable training on
ImageNet dataset.
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Width Role Input AP AP50 AP75 APS APM APL

1.0×
T

H 39.7 57.9 43.2 27.2 44.0 49.3
L 37.8 55.7 40.6 18.9 40.5 54.4

H&L 42.5 61.1 46.3 28.0 45.7 55.7

S
H 42.3 61.3 45.9 28.2 45.9 53.5
L 39.7 58.0 42.5 21.7 42.9 55.0

0.75×
T

H 38.3 56.1 41.5 25.7 42.5 47.3
L 36.8 54.4 39.4 18.4 39.1 53.2

H&L 41.1 59.2 44.5 26.7 44.2 54.3

S
H 41.3 60.0 44.6 27.4 44.7 51.9
L 38.6 56.7 41.3 20.8 41.2 53.8

0.5×
T

H 36.0 53.5 39.0 23.2 39.8 44.7
L 33.8 50.8 36.4 16.3 35.4 49.1

H&L 38.5 56.3 41.7 23.5 40.9 50.6

S
H 38.8 57.1 42.0 25.3 41.9 48.9
L 36.1 53.7 38.8 18.4 38.2 50.4

0.25×
T

H 30.5 46.5 32.5 18.1 33.2 39.1
L 28.5 43.9 30.2 12.4 29.2 42.8

H&L 33.2 49.9 35.4 19.0 34.7 44.4

S
H 33.4 50.5 35.6 20.0 35.5 43.0
L 30.4 46.5 32.3 15.1 31.5 44.1

Table 1: Performance evaluation on using slimmed ResNet-
50 [6] with different widths as the detector backbones. H&L
is the multi-scale fusion teacher that distills knowledge to
student S with either H (800px) or L (400px) input reso-
lution. At a particular network width, there is only a sin-
gle teacher that is evaluated on several resolution types, and
there are two distinct students trained respectively for H and
L input resolutions. 1× training schedule is used here.

bone FLOPS which are about half of the full-width high-
resolution model’s. However, the dual-resolution model
comes with separate dual-resolution backbones that can
fully run in parallel before the feature fusion happens. The
inference runtime efficiency can be significantly boosted by
running the dual-resolution backbones separately on differ-
ent hardware accelerators, in a similar spirit to parallelizing
large-scale neural network training [2]. This is not appli-
cable to the single-resolution 0.75×-width model that has
only sequentially-dependent layers. Our multi-scale feature
fusion approach can be seen as a way to perform effective
model separation that can potentially benefit from advances
in model parallelism.

E. Training Details for 3× Training Schedule
For FCOS [5], RetinaNet [4] and MEInst [7], λ, γ are set

to 0.4 and 0.8. Whereas, for Mask R-CNN [1], λ and γ are
set to 0.2 and 0.6. Compared to the experiments with 1×
training schedule, we adopt smaller γ values here for 3×
training schedule. λ balances our proposed aligned knowl-
edge distillation (KD) loss and original detection loss. In
a prolonged training process, it is beneficial to provide a
stronger emphasis to KD loss due to the fact that the orig-

Resolution Inference
APS APS

50 APS
75 APS

S APS
M APS

LType Resolution

H

800 42.3 61.3 45.9 28.2 45.9 53.5
768 42.4 61.3 45.8 27.4 45.9 53.6
736 42.2 61.1 45.7 27.2 45.9 54.3
704 42.1 61.0 45.6 26.9 45.8 54.5
672 41.9 60.7 45.1 25.2 45.7 54.3
640 41.7 60.3 44.7 24.7 45.6 55.3

L

400 39.7 58.0 42.5 21.7 42.9 55.0
384 39.3 57.8 42.0 20.9 42.3 55.3
368 38.9 57.2 41.7 19.7 42.0 55.6
352 38.6 56.8 41.4 19.9 41.7 55.5
336 37.9 55.8 40.4 18.8 40.6 55.6
320 37.4 55.1 39.9 18.3 39.7 55.9

EL

200 31.8 47.8 33.4 12.2 31.4 52.2
192 31.1 46.7 32.7 11.4 30.8 51.3
184 30.4 45.8 31.9 11.3 29.8 51.2
176 29.6 44.8 30.9 10.3 28.9 49.9
168 28.7 43.6 30.2 9.4 27.7 49.1
160 27.9 42.5 28.8 8.9 26.7 48.1

Table 2: Performance evaluation on the high(H)-, low(L)-
, and extremely low(EL)-resolution student (with ResNet-
50 backbone and FCOS) models guided by our final
multi-scale fusion teacher trained on three base resolutions
(800px, 400px, 200px). 1× training schedule is used here.

Width (H) Width (L) APS APS
50 APS

75 APS
S APS

M APS
L

0.50× 1.00× 41.4 59.9 44.5 24.6 44.5 54.6
0.50× 0.75× 41.1 59.4 44.0 24.5 43.6 54.5
0.50× 0.50× 40.1 58.5 43.2 24.5 42.7 51.8
0.25× 0.50× 37.6 55.5 40.6 20.8 40.0 50.9

Table 3: Performance evaluation on using dual-resolution
(high/H and low/L input resolutions) slimmed backbones
within multi-scale fusion student models.

inal detection loss converges sooner than KD loss does. A
greater KD loss weight allows the training to better focus
on minimizing the KD loss after the original detection loss
converges.

In the 3× training schedule experiments, Mask R-CNN
uses feature maps from P2 to P6 for high-resolution (800px)
model. In our setting, we shift the pyramid feature level for
the low-resolution (400px) model by setting m=1. In other
words, we use the feature maps from P1 to P5 for the low-
resolution model. For the low-resolution Mask R-CNN, we
define P1 as the combination of P2 and C1 features, follow-
ing the standard FPN structure [3]. C1 corresponds to the
features that come after the first 7× 7 convolution block of
ResNet architecture.
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F. Visualization results
We show the visualization results of the low-resolution

student models (all with ResNet-50 backbones) trained with
our framework on object detection, instance segmentation,
and keypoint detection. For all tasks, we apply a thresh-
old score of 0.7 to filter out unconfident detections. For
each row, the left, middle and right sub-figures correspond
to the the ground truth, the result from the multi-scale fu-
sion (800px&400px) teacher model, and the result from the
low-resolution (400px) student trained with our approach,
respectively. It is notable that the low-resolution model per-
forms very well even on small-sized objects.

Figure 1: Object detection with FCOS.
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Figure 2: Instance segmentation with Mask R-CNN. Figure 3: Keypoint Detection with Mask R-CNN.
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