
Supplementary material for PQA: Perceptual Question Answering

Yonggang Qi1* Kai Zhang1∗ Aneeshan Sain2 Yi-Zhe Song2

1Beijing University of Posts and Telecommunications, CN
2SketchX, CVSSP, University of Surrey, UK

{qiyg, forer}@bupt.edu.cn {a.sain, y.song}@surrey.ac.uk

1. Introduction
This supplementary material is to further describe the

details of our synthetic dataset PQA. We first compare our
proposed PQA dataset with ARC dataset in section 2, then
describe the data format of PQA in section 3, and finally
explain the detailed steps of data generation for every task
of PQA in section 4. More examples of the generated data
are attached accordingly as well.

2. PQA vs ARC
As shown in Table 1, we offer some statistics of both

ARC and our proposed PQA datasets for comparison. De-
spite being driven by the same general intuition, we can
see that our dataset is specifically designed for perceptual
organization, which is constructed based on a set of spe-
cific Gestalt laws. Therefore, most of the rules implied in
our Q/A pairs are not covered by ARC, which is a general
AI benchmark. The rule of rotation symmetry is the only
overlapping one. Secondly, ARC has a very limited amount
of data-samples (about 1000 in total), where even the im-
plied rule for every data-sample is not provided. As a re-
sult, benchmarking for each individual rule is impossible
for ARC. On the contrary, our dataset offers 100k different
instances for each Gestalt law, thereby facilitating explicit
measurement of rule-specific perceptual grouping.

3. Data format
In its raw data representation, each question/answer grid

(width w, height h) is composed of w × h color sym-
bols. Taking a question grid-image as example, it can be
represented as xq = {si,j}w,h

i=1,j=1, where si,j is a color
symbol at location (i, j). Every si,j is denoted by one
of the 10 pre-defined color symbols as shown in Figure 1
namely, snow (0), dark-orange (1), forest-green
(2), royal-blue (3), light-gray (4), turquoise
(5), slate-blue (6), fire-brick (7), gold (8),
deep-pink (9). For example, si,j = 1 if the color is

*Equal contribution

0 1 2 3 4 5 6 7 8 9

Figure 1. Color symbols and their corresponding codes.

dark-orange at location (i, j) of a grid-image. In prac-
tice, all data is stored in JSON format.

4. Data generation

4.1. T1 Closure Filling

Figure 2 illustrates the grid-image generation process for
T1 (closure filling): (i) Generate a blank canvas of size
(w, h) for grid-image and set all slots as background with
a randomly selected symbol. (ii) Starting from a random
location, expand vertically or horizontally, by repetitively
placing the same symbol in any one of the 8 slots linked to
the current location. After k iterations, a foreground formed
from connected symbols is obtained as an answer-grid. (iii)
To obtain the question-grid, we remove the internal sym-
bols of the closure region, leaving behind only the bound-
ary symbols. Corresponding pseudo code is shown in Al-
gorithm 1. Some examples of generated data are shown in
Figure 10.

4.2. T2 Continuity Connection

Figure 3 illustrates the grid-image generation process for
T2 (Continuity Connection): (i) Generate a blank canvas
of size (w, h) for the grid-image and set all slots as back-
ground with a randomly selected symbol. (ii) Set 5-10 fore-
ground slots at random location in the canvas. (iii) Ran-
domly remove redundant slots till no more than two fore-
ground slots are present in the same line both in vertical and
horizontal directions. This forms our question grid. (vi) the
answer grid is formed by connecting all foreground slots in
the same line. Corresponding pseudo code is shown in Al-
gorithm 2. Some examples of generated data are shown in
Figure 11.

1

Table 1. Comparison of ARC and our proposed PQA dataset.
Dataset Implied Rules Sub-Rules #Data Target

ARC

Objectness priors
Object cohesion

1000 in total

Object persistence
Object influence via contact

Goal directedness priors -
Numbers and counting priors -

Basic geometry and topology priors

Lines, rectangular shapes General
Symmetries, rotations, translations Core

Shape upscaling/downscaling Knowledge
Elastic distortions

Containing/being contained
Drawing lines, connecting points

Orthogonal projections
Copying, repeating objects

PQA Gestalt laws

Closure filling

100k per law

Continuity connection
Proximity identification Specific

Shape reconstruction Gestalt
Shape & pattern similarity Cognition

Reflection symmetry
Rotation symmetry

Expand by random walk (iter 1&6) Question

AnswerExpand by random walk (iter 8&10)

Figure 2. Key steps of data synthesis for T1 (closure filling task).

4.3. T3 Proximity Identification

Figure 4 illustrates the grid-image generation process for
T3 (Proximity Identification):(i) Generate a blank canvas
of size (w, h) for the grid-image and set all slots as back-
ground with a randomly selected symbol. (ii) Randomly
select one of 14 pre-defined shapes, which are shown in
Figure 5, and place the chosen shape at a random location in
canvas. (iii) Place 1-16 single foreground symbols scattered
at random locations in the background of canvas to form
the question grid. (iv) To construct the answer grid, replace
the symbols of the foreground shape with the nearest single
symbol and remove all the scattered symbols. Correspond-
ing pseudo code is shown in Algorithm 3. Some examples

Drop
foreground slots

Redundancy
removal (i) Question

Answer
Redundancy
removal (ii) Connecting

Figure 3. Key steps of data synthesis for T2 (Continuity Connec-
tion). Red circle denotes the removed redundant slots.

of generated data are shown in Figure 12.

4.4. T4 Shape Reconstruction

Figure 6 illustrates the grid-image generation process
for T4 (Shape Reconstruction): (i) Generate a blank can-
vas of size (w, h) for the grid-image and set all slots as
background with a randomly selected symbol. (ii) Gen-
erate two rectangles with height in range [4, h

2] and width
in range [4, w

2]. (iii) The answer grid can be obtained by
placing these two rectangles on the canvas with some free

2

Algorithm 1 Closure Filling Data Generation
Input h: height , w: width . h and w are both randomly initialized in range of [6,30]

k: number of foreground slots . k is a random number in range of [1, 2
√
hw]

smbbg: background symbol . smbbg is randomly selected in [0, 9]
smbfg: foreground symbol . smbfg is randomly selected in [0, 9], smbfg 6= smbbg

Output xq: question grid, xa: answer grid
1: procedure GENERATE(h,w, k, smbbg, smbfg)
2: step (i)
3: canvas(: h, : w)← smbbg . int canvas with all slots in background symbol
4: step (ii)
5: counterfg ← 0 . init counter of foreground slots to 0
6: repeat ×2 . result in two separate connected areas or a merged connected area
7: p0 ← random(h,w) . init starting point p0 at random location within canvas
8: p← p0 . set current location p to p0
9: canvas(p)← smbfg . place foreground symbol smbfg at current location p

10: counterfg ← counterfg + 1 . increase foreground counter by one
11: while counterfg < k do . do until the number of foreground slots reach k
12: p← random(8 neighbors of p) . set current location p to a randomly chosen neighbor’s location
13: if canvas(p) is smbbg then . if current location is still a background symbol
14: canvas(p)← smbfg . assign current location with foreground symbol
15: counterfg ← counterfg + 1 . increase foreground counter by one
16: p← p0 . set current location p to init position p0
17: else
18: continue . back to line 9
19: end if
20: end while
21: until
22: regionout ← outer(foreground) . get the outer ring of foreground region
23: regionin ← inner(foreground) . get the internal closure region
24: step (iii)
25: xa(: h, : w)← smbbg . init answer xa in size (h, w) with background symbol
26: xa(regionin ∪ regionout)← smbfg . answer is formed by setting closure regions as foreground
27: xq(: h, : w)← smbbg . init question xq in size (h, w) with background symbol
28: xq(regionout)← smbfg . question is formed by setting outer ring as foreground
29: if connected(background, xa) then . guarantee the resulting background in xa is a single connected area
30: return xq, xa

31: else
32: restart procedure . restart the whole procedure otherwise
33: end if
34: end procedure

space in between (a minimum of 2 slots). (iv) The ques-
tion grid is formed by randomly converting 50% symbols
of each resulting rectangle in the answer grid to their back-
ground symbols. Corresponding pseudo code is shown in
Algorithm 4. Some examples of generated data are shown
in Figure 13.

4.5. T5 Shape & Pattern Similarity

Figure 7 illustrates the grid-image generation process for
T5 (Shape Reconstruction): (i) Generate a blank canvas
of size (w, h) for the grid-image and set all slots as back-

ground with a randomly selected symbol. (ii) Generate two
squares (sa and sb), each of size 5×5. (iii) Set every slot of
each square to a random symbol from a set of symbols (3-5
random symbols which must contain the background sym-
bol). (iv) Select a square (e.g., sa), and resize it to 10 × 10
to construct a double size square ŝa. Then we place both
sa and ŝa on the canvas without overlapping one another to
form the answer grid-image. (v) To obtain the question grid
we replace all slots in ŝa with a new symbol, and place an-
other square sb in the canvas without overlapping on the ex-
isting squares. Corresponding pseudo code is shown in Al-

3

Algorithm 2 Continuity Connection Data Generate
Input h: height, w: width . h and w are both randomly initialized in range of [10,30]

k: number of foreground slots . k is a random number in range of [5, 10]
smbbg: background symbol . smbbg is randomly selected in [0, 9]
smbfg: foreground symbol . smbfg is randomly selected in [0, 9], smbfg 6= smbbg

Output xq: question grid, xa: answer grid
1: procedure GENERATE(h,w, k, smbbg, smbfg)
2: step (i)
3: canvas(: h, : w)← smbbg . init canvas with all slots with background symbol
4: step (ii)
5: pos← rand pos(k) . randomly select k different position in canvas
6: for p ∈ pos do
7: canvas(p)← smbfg . assign foreground symbol at every location p in canvas
8: end for
9: step (iii)

10: for line ∈ (rows ∪ cols) do . for each line in vertical or horizontal direction
11: if |fg slot(line)| > 2 then . if more than two foreground slots found in the same line
12: canvas← remove slot(line) . randomly remove redundant foreground slots on canvas
13: end if
14: end for
15: xq ← canvas . question grid is obtained
16: step (iv)
17: for line ∈ (rows ∪ cols) do
18: if is lineup slot(line) then . check if two foreground slots in the same line
19: canvas← connect slot(line) . connect slots by assigning the same symbol to slots in between
20: end if
21: end for
22: xa ← canvas . answer grid is obtained
23: return xq, xa

24: end procedure

Place shape Place symbols (i) Question

AnswerPlace symbols (ii) (iii)

Figure 4. Key steps of data synthesis for T3 (Proximity Identifica-
tion).

gorithm 5. Some examples of the generated data are shown
in Figure 14.

Figure 5. All shapes used in T3 (Proximity Identification)

4.6. T6 Reflection Symmetry

Figure 8 illustrates the grid-image generation process
for T6 (Reflection Symmetry): (i) Generate a blank can-
vas of size (w, h) for the grid-image and set all slots as
background with a randomly selected symbol. (ii) Gener-
ate a rectangle r such that: if it is flipped along the hor-
izontal it should have its height in range [3, h], width in
[3, w

2]; whereas for flipping along the vertical it should have
its height set to [3, h

2] and width in [3, w]. (iii) Randomly
replace 30% slots of r with the background symbol. (iv)
Generate a symmetry axis along the long or short side of
r, and place them on the canvas to form the question. This

4

Algorithm 3 Proximity Identification Data Generation
Input h: height , w: width . h and w are both randomly initialized in range of [10,30]

object: foreground shape . object is randomly select from 14 pre-defined shapes
smbobj : object symbol . smbobj is randomly selected in [0, 9]
smbbg: background symbol . smbbg is randomly selected in [0, 9], smbbg 6= smbobj
smbsfg: single foreground symbols . smbsfg: 1− 4 symbols in [0, 9], (smbbg ∪ smbobj) ∩ smbsfg = ∅
k: for every symbol in smbsfg , there are k slots placed in canvas . k is up to 4

Output xq: question grid, xa: answer grid
1: procedure GENERATE(h,w, k, object, smbobject, smbbg, smbsfg)
2: step (i)
3: canvas(: h, : w)← smbbg . init canvas with all slots using background symbol
4: step (ii)
5: regionobject ← rand region(object.size) . randomly locate an object region in canvas
6: canvas(regionobject)← smbobj . assign slots in regionobject with symbol smbobj
7: step (iii)
8: slots← [] . init an empty list slots
9: for sfg ∈ smbsfg do

10: pos← rand pos(k) . randomly select k different locations in canvas
11: for p ∈ pos do
12: if p not in regionobject then
13: canvas(p)← sfg . put on the canvas
14: slots.insert({p, sfg}) . assign symbol sfg at location p, inserted in slots
15: end if
16: end for
17: end for
18: xq ← canvas . question grid is obtained
19: step (iv)
20: distances← [] . init an empty list distances
21: for slot ∈ slots do
22: d← dist(slot, regionobject) . calculate the minimum euclidean distance between a slot and the object
23: distances.insert({d, slot}) . insert dist, slot into distances
24: end for
25: nearest slot← min(distances) . find the nearest slot to object
26: if len(nearest slot) > 1 then . if more than one nearest slot found
27: restart procedure . restart the whole procedure to guarantee an unique nearest slot exists
28: end if
29: smbnearest ← nearest(1).sfg . get corresponding foreground symbol of the nearest slot
30: canvas(regionobject)← smbnearest . replace regionobject with symbol of the nearest slot
31: canvas← remove(slots) . remove all the scattered slots (replace with background)
32: xa ← canvas . answer grid is obtained
33: return xq, xa

34: end procedure

would symbolize the axis for flipping the question pattern.
(v) Obtain the mirror shape r̂ of r along the symmetry axis
to form the answer. Corresponding pseudo code is shown in
Algorithm 6. Some examples of generated data are shown
in Figure 15.

4.7. T7 Rotation Symmetry

Figure 9 illustrates the grid-image generation process for
T7 (Rotation Symmetry): (i) Generate a rectangle r with

both height and width between 5 and 15 slots. (ii) Set all
slots with randomly selected 3-5 different symbols. (iii)
Generate a new rectangle r̂ as the answer grid by flipping
r twice over – we first flip r along horizontal direction to
generate a new rectangle r′ (Figure 9), which is then flipped
again along vertical direction, giving r̂. This forms our
answer grid. (iv) Based on the answer grid, generate two
rectangle masks to form the corresponding question grid.
Pseudo code is shown in Algorithm 7. Some examples of

5

Algorithm 4 Shape Reconstruction Data Generate
Input h: height, w: width . h and w are both randomly initialized in range of [12,30]

smbbg: background symbol . smbbg is randomly selected in [0, 9]
smbfg: foreground symbol . smbfg is randomly selected in [0, 9], smbfg 6= smbbg

Output xq: question grid, xa: answer grid
1: procedure GENERATE(h,w, smbbg, smbfg)
2: step (i)
3: canvas(: h, : w)← smbbg . init canvas with all slots in background symbol
4: step (ii)
5: rectsa ← [] . init an empty list rectsa for creating two rectangles
6: repeat ×2 . generate two rectangles
7: recth ← random([4, h

2))
8: rectw ← random([4, w

2))
9: rect(: recth, : rectw)← smbbg . create rect with size recth × rectw

10: rectsa.insert(rect) . store rectangle rect in rectsa
11: until
12: step (iii)
13: regions← rand regions(rectsa.size) . select two regions for placing rectsa with a minimum gap (2 slots)
14: canvas← put(regions, rectsa) . place two rectangles rectsa in canvas
15: xa ← canvas . answer grid is obtained
16: step (iv)
17: rectsq ← [] . init an empty list rectsq for generate two masked rect
18: for rect ∈ rectsa do
19: rect← rand set(0.5, smbbg) . randomly set 50% symbols of rect to smbbg
20: sides← get sides(rect) . get 4 sides of rect
21: for side ∈ sides do . for each side of masked rect at least has two foreground slots
22: while count(smbfg, side) < 2 do . otherwise, we increase the number to two
23: p← rand pos(side) . randomly select a position
24: side(p)← smbfg . set the corresponding slot to foreground.
25: end while
26: end for
27: rectsq.insert(rect)
28: end for
29: canvas← put(regions, rectsq) . place the masked rectangles rectsq in the canvas
30: xq ← canvas . question grid is obtained
31: return xq, xa

32: end procedure

the generated data are shown in Figure 16.

6

Algorithm 5 Shape & Pattern Similarity Data Generation
Input h: height, w: width . h and w are both randomly initialized in range of [12,30]

smbmask: mask symbol used for question grid . smbmask is randomly selected in [0, 9]
smbbg: background symbol . smbbg is randomly selected in [0, 9], smbbg 6= smbmask

smbsfg: foreground symbols . smbsfg: 3− 5 symbols in [0, 9], smbbg ∈ smbsfg, smbmask 6∈ smbsfg
Output xq: question grid, xa: answer grid

1: procedure GENERATE(h,w, smbmask, smbbg, smbsfg)
2: step (i)
3: canvas(: h, : w)← smbbg . init canvas with all slots in background symbol
4: step (ii) & (iii)
5: for i ∈ {a, b} do . creating two squares sa and sb
6: si(: 5, : 5)← smbbg . create square in size 5× 5
7: si ← rand set(smbsfg) . randomly set each slot in si with one of smbsfg
8: end for
9: step (iv)

10: ŝa ← resize(sa, {10, 10}) . resize sa to a double size square ŝa
11: sar ← rand region({5, 5}) . select a region for sa
12: sbr ← rand region({5, 5}) . select a region for sb
13: ŝar ← rand region({10, 10}) . select a region for ŝa
14: if is overlapping(sar, sbr, ŝar) then
15: restart procedure . guarantee all regions are non-overlapping
16: end if
17: canvas(sar)← sa . place sa in canvas
18: canvas(ŝar)← ŝa . place ŝa in canvas
19: xa ← canvas . answer grid is obtained
20: step (v)
21: canvas(ŝar)← smbmask . mask region ŝar for constructing question
22: canvas(sbr)← sb . place sb in canvas
23: xq ← canvas . question grid is obtained
24: return xq, xa

25: end procedure

Generate and place rectangles Question

AnswerMask rectangles and placement

Figure 6. Key steps of data synthesis for T4 (Shape Reconstruc-
tion).

Question

AnswerShape placement

Generate two squares and resize

Mask

Figure 7. Key steps of data synthesis for T5 (Shape & Pattern Sim-
ilarity Generate Algorithm).

7

Algorithm 6 Reflection Symmetry Data Generation
Input h: height, w: width . h and w are both randomly initialized in range of [10,30]

smbsa: symmetry axis symbol . smbsa is randomly selected in [0, 9]
smbbg: background symbol . smbbg is randomly selected in [0, 9], smbbg 6= smbsa
smbfg: foreground symbol . smbfg is randomly selected in [0, 9], smbfg 6= smbbg, smbfg 6= smbbg

Output xq: question grid, xa: answer grid
1: procedure GENERATE(h,w, smbsa, smbbg, smbfg)
2: step (i)
3: canvas(: h, : w)← smbbg . init canvas with all slots in background symbol
4: step (ii)
5: sa← rand(top, bottom, left, right) . select a side in (top, bottom, left, right) as symmetry axis
6: if sa ∈ {top, bottom} then . if would flip along vertical direction
7: r ← rand size([3, h

2], [3, w]) . create rectangle r with height in range of [3, h
2] , width in range of [3, w]

8: else if sa ∈ {left, right} then . if would flip along horizontal direction
9: r ← rand size([3, h], [3, w

2]) . create rectangle r with height in range of [3, h] , width in range of [3, w
2]

10: end if
11: step (iii)
12: r ← rand set({0.7, smbfg}, {0.3, smbbg}) . set 30% slots of r to background and the rest to foreground
13: regionr ← rand region(r.size) . randomly select a region fits the size of r
14: canvas(regionr)← r . place r in canvas
15: step (iv)
16: regionsa ← get side(regionr) . get symmetry axis region
17: canvas(regionsa)← smbsa . set symmetry axis region with smbsa in canvas
18: xq ← canvas . question grid is obtained
19: step (v)
20: r̂ ← symmetry(r, sa) . get the mirror shape r̂ of r along symmetry axis sa
21: regionr̂ ← symmetry region(region, sa) . get the region of r̂ in canvas
22: canvas(regionr̂)← r̂ . place r̂ in canvas
23: xa ← canvas . answer grid is obtained
24: return xq, xa

25: end procedure

Question

Answer

Generate a rectangle and mask

Place and flip horizontal

Figure 8. Key steps of data synthesis for T6 (Reflection Symme-
try).

Question

Answer

Generate rectangle

Mask generation

Flip horizontal

Flip vertical

Figure 9. Key steps of data synthesis for T7 (Rotation Symmetry).

8

Algorithm 7 Rotation Symmetry Data Generation
Input h: height, w: width . h and w are both randomly initialized in range of [5, 15]

smbmask: mask symbol . always set to 0 at now
smbs: symbols . smbs: 3− 5 symbols in [0, 9] to construct the pattern of r, smbmask 6∈ smbs

Output xq: question grid, xa: answer grid
1: procedure GENERATE(h,w, smbmask, smbs)
2: step (i) & (ii)
3: r ← empty(h,w) . create a blank rectangle r in size h× w
4: r ← rand set(smbs) . randomly set every slot of r with one symbol in smbs
5: step (iii)
6: r ← flip horizontal(r) . flipping r along vertical direction firstly.
7: r̂ ← flip vertical(r) . flip the updated rectangle r again along horizontal direction.
8: xa ← r̂ . answer grid is obtained
9: step (iv)

10: sizemask ← rand size({1, h
2 }, {1, w}) . randomly get a size with height in [1, h

2] and width in [1, w]
11: regionmask ← rand region(r̂, sizemask, tb) . get a mask region at top/bottom half of r̂
12: r̂(regionmask)← smbmask . mask r̂ within regionmask with smbmask

13: sizemask ← rand size({1, h}, {1, w
2 }) . randomly get a size with height in [1, h] and width in [1, w

2]
14: regionmask ← rand region(r̂, sizemask, lr) . get a mask region at left/right half of r̂
15: r̂(regionmask)← smbmask . mask r̂ within regionmask with smbmask

16: xq ← r̂ . question grid is obtained
17: return xq, xa

18: end procedure

9

Question Answer Question Answer

Figure 10. Sample of T1 (Closure Filling)

10

Question Answer Question Answer

Figure 11. Sample of T2 (Continuity Connection)

11

Question Answer Question Answer

Figure 12. Sample of T3 (Proximity Identification)

12

Question Answer Question Answer

Figure 13. Sample of T4 (Shape Reconstruction)

13

Question Answer Question Answer

Figure 14. Sample of T5 (Shape & Pattern Similarity)

14

Question Answer Question Answer

Figure 15. Sample of T6 (Reflection Symmetry)

15

Question Answer Question Answer

Figure 16. Sample of T6 (Rotation Symmetry)

16

