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1. Overview
In the main paper, we have described MVDNet, a deep

late fusion model for vehicle detection. MVDNet exploits

lidar and radar’s complementary advantages and achieves

robust vehicle detection even in adverse foggy weather con-

dition. Experimental results on a procedurally generated

dataset show that MVDNet achieves notably better per-

formance on vehicle detection in foggy weather condition

compared with the state-of-the-art detectors [11, 5, 3, 2].

To better understand the performance of MVDNet, in this

supplementary material, we provide additional evaluation

results, including comparison with existing temporal fusion

methods (Sec. 2), results of clear-only training (Sec. 3), ef-

fect of temporal and sensor fusion order (Sec. 5), ablation

study on MVDNet-Fast (Sec. 6), additional visualization of

sensor contribution (Sec. 7) and vehicle detection (Sec. 8).

We further provide details of the dataset annotation (Sec. 9)

and MVDNet network architectures (Sec. 10) to ease re-

production, and discuss MVDNet’s limitations along with

future work (Sec. 11).

2. Comparison with Existing Temporal Fusion
Methods

MVDNet uses a temporal fusion network to merge his-

torical data of the lidar and radar. As a comparison, we fur-

ther report the performance of Fast and Furious (F&F) [4], a

single-stage detector that fuses historical frames of the lidar.

F&F develops two variants of the VGG-16 network [6] that

fuses five lidar frames. The first model (Early-F&F) con-

catenates all lidar frames along the temporal dimension and

uses a 1D convolution to reduce the temporal dimension to

1 at the early stage. The second model (Late-F&F) modifies

two convolution layers of VGG-16 to perform 3D convolu-

tion and reduce the temporal dimension to 1. Tab. 1 shows

the overall performance of F&F and MVDNet. MVDNet

consistently outperforms F&F thanks to the use of addi-

tional radar signals. When trained with both clear and foggy

data, Late-F&F statistically outperforms Early-F&F, mean-

ing that the late fusion captures the useful temporal infor-

mation better than the early fusion. When no foggy data is

provided in the training sets, we observe that the Early-F&F

and Late-F&F have comparable performance.
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Figure 1. Precision-recall curves on clear-only training set.
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Figure 2. Impact of fog density on clear-only training set.

3. Results of Clear-Only Training
This section provides the additional evaluation results

where models are trained with only clear lidar point clouds.

Fig. 1 shows the fine-grained precision-recall curves of all

detectors with IoU averaged over [0.5, 0.8]. When trained

with only clear data, MVDNet still shows significant ad-

vantages over other detectors, verifying the effectiveness

of MVDNet’s late fusion design. Comparing with training

sing both clear and foggy lidar point clouds (Fig. 6 in the

main paper), training with only clear lidar point clouds has

lower performance, which is consistent with the numeric

results in Tab. 1 in the main paper.

Fig. 2 shows the AP of all detectors under typical fog

densities from 0.005 m−1 to 0.08 m−1, when the detectors

are trained with only clear lidar point clouds. The results

are consistent with Fig. 7 in the main paper, where the per-

formance of all detectors drops as the fog density increases.

However, without the foggy lidar point clouds in the train-



Method

Train Clear+Foggy Clear-only

#ParamsTest Clear Foggy Clear Foggy

IoU 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8

Early-F&F [4] 77.81 71.61 39.90 70.37 63.66 35.08 77.62 70.81 43.21 61.99 54.96 28.77 2,519K

Late-F&F [4] 80.64 73.73 44.48 71.63 65.00 38.09 79.50 72.16 40.17 61.47 53.04 24.90 2,607K

MVDNet-Fast (Ours) 88.99 86.20 68.30 85.58 82.25 62.76 88.91 85.96 68.15 76.30 73.97 56.96 977K
MVDNet (Ours) 90.89 88.82 74.63 87.40 84.61 68.88 87.22 86.06 72.63 77.98 75.89 61.55 8,591K

Table 1. Comparison with existing temporal fusion methods: AP of oriented bounding boxes in bird’s eye view. Bold numbers represent

the best score among all the methods.

Method
Test Clear Foggy

IoU 0.5 0.65 0.8 0.5 0.65 0.8

Radar-Only 73.04 68.27 43.25 - - -

Lidar-Only 86.96 85.78 72.46 77.60 75.66 63.20

MVDNet (Ours) 90.89 88.82 74.63 87.40 84.61 68.88
MVDNet-Reverse 88.75 85.94 71.66 85.51 82.85 66.91

Table 2. Additional ablation study on MVDNet: AP of oriented

bounding boxes in bird’s eye view.

ing set, all detectors experience similar dropping rates. It

indicates that augmenting the clear data with foggification

is crucial for robust all-weather detection.

4. Performance with Single Sensor Modality
To better understand the benefit from each sensor, we

compare the performance of MVDNet and the models with

single sensors on the separate clear and foggy test sets.

Tab. 2 shows the AP of the models on the two test sets. First,

the radar-only model achieves poorer performance than the

lidar-only model, mainly because that the radar has coarser

granularity than the lidar, as discussed in the main paper.

Second, with the help of the radar, MVDNet outperforms

the lidar-only model for both test sets. Specifically, the AP

is improved by 3% for the clear test set and 8.1% for the

foggy test set. It means that the benefits of radar are two

folds. First, in clear weather, the radar can capture RF re-

flections from vehicles that are naturally occluded in the vis-

ible spectrum (e.g., vehicles behind bushes and walls) and

cannot be seen by the lidar. Second, in foggy weather, the

radar can see through fogs and further help the lidar detect

vehicles occluded by fogs.

5. Effect of Temporal and Sensor Fusion Order
As shown in Fig. 3 in the main paper, MVDNet first fuses

feature vectors of the two sensors and then fuses feature ten-

sors along the temporal dimension. To evaluate the impact

of the order between temporal and sensor fusion, we switch

the sensor fusion and temporal fusion networks. Specifi-

cally, we use two temporal fusion networks to fuse region-

wise feature tensors of the two sensors along the tempo-

ral dimension and then apply sensor fusion to the outputs

of the temporal fusion networks. This variant of MVD-

Net is named as MVDNet-Reverse. Tab. 2 compares the

performance of MVDNet and MVDNet-Reverse. Though

MVDNet-Reverse has one more temporal fusion network,

its AP drops by 2.3% on average, compared with MVD-

Method IoU 0.5 0.65 0.8

Radar-Only-Fast 70.82 65.38 35.52

Lidar-Only-Fast 82.69 79.71 62.43

Lidar Reconstruction-Fast 85.28 81.47 63.45

No History-Fast 85.91 82.58 62.26

No History/Fusion-Fast 83.37 80.01 61.86

MVDNet-Fast (Ours) 87.29 84.23 65.53
Table 3. Ablation study on MVDNet-Fast: AP of oriented bound-

ing boxes in bird’s eye view (averaged over both clear and fog

testing sets).

Net. The result indicates that the temporal fusion benefits

from the sensor fusion, which extracts more detailed infor-

mation from the two sensors via the attention-based net-

works for further temporal fusion. In contrast, MVDNet-

Reverse compresses the information of multiple frames by

early temporal fusion, which can negatively affect the gran-

ularity and capability of the attention-based sensor fusion.

6. Ablation Study on MVDNet-Fast
This section provides additional ablation study of

MVDNet-Fast. As shown in Tab. 3, we first evaluate the

individual contribution of lidar and radar. Similar to the

ablation study of MVDNet (Tab. 2 in the main paper), the

radar-only model has a significant performance drop due to

the coarse granularity and lack of height information of the

radar. The performance of the lidar-only model drops by

4.1% on average, mainly due to the adverse impact of fog.

In contrast, the lidar reconstruction model takes advan-

tage of both lidar and radar data and achieves better perfor-

mance than the models using either individual sensor. The

lidar reconstruction model fuses the lidar and radar data at

the early feature extraction stage to reconstruct the incom-

plete lidar point clouds due to fog blockage. However, due

to the low data quality of radar compared with lidar, the

reconstruction with the early fusion is ineffective. Specifi-

cally, radar has a lower angular resolution than lidar, result-

ing in a severer blurry effect at far distances. For example,

the high-end NavTech CTS350-X radar in our dataset uses

a directional mechanic antenna to achieve a resolution of

0.9o, while the Velodyne HDL-32E lidar has a much higher

resolution of 0.33o. Moreover, radar cannot provide accu-

rate height information due to its limited antennas along the

vertical direction. In contrast, vehicle lidar usually employs

tens of vertical laser channels. Last but not least, radar suf-



(a) BEV gradient of lidar (b) BEV gradient of radar (c) Lidar 3d point cloud (d) Point-wise gradient

Figure 3. Illustration of the contribution of the lidar and radar inputs. (a) and (b) show the bird’s eye view (BEV) gradients of the detected

vehicles’ features with respect to the lidar and radar inputs (brighter color means a larger gradient). (c) shows the foggy point clouds within

the reduced visible range of the lidar. (d) shows the gradients (orange colored) of the detected vehicles’ features with respect to the visible

lidar points.

fers from noise artifacts and ghost images due to saturation

and multipath effect [8]. In contrast, MVDNet bypasses the

ineffective reconstruction step and fuses the region-wise li-

dar and radar features at the late stage, which concentrates

more on the detection task and achieves a higher AP.

Besides, we further evaluate the impact of fusing histor-

ical information. First, we only use the current lidar and

radar frames and implement the no-history model. The no-

history model has a higher AP than the lidar-only model,

which uses the historical information of the lidar. It shows

that the fusion of the two sensors is critical for vehicle de-

tection in adverse foggy weather. However, the AP of the

no-history model is still 2.1% lower than that of MVDNet-

Fast. It is due to the lack of historical information, which

may “extend” the present visible range of lidar with the

area visible in the past. Second, we further replace the

fusion networks with a single convolution layer with the

same input and output dimensions and implement the no-

history/fusion model. Compared with the no-history model,

the no-history/fusion model has a 1.8% lower AP, demon-

strating the necessity of attention-based sensor fusion.

7. Visualization of Sensor Contribution
In Fig. 9 and 10 of the main paper, we illustrate the gra-

dients of the detected vehicles’ features with respect to the

local inputs of the two sensors. In this section, we further

provide the gradients with respect to the whole inputs to

better understand the sensors’ contributions. Fig. 3 shows

the gradients of two scenes. Fig. 3a and 3b compare the

bird’s eye view gradients with respect to the lidar and radar

inputs. In the first scene (i.e., the first row), the top two

and bottom one vehicles are out of the lidar’s visible range,

while in the second scene (i.e., the second row), the top two

and bottom three vehicles are out of the lidar’s visible range.

As a result, the gradients of these vehicles with respect to

the lidar input are close to zero, indicating that the lidar has

little contribution to the vehicles out of its reduced visible

range. In contrast, since the radar is immune to fog, the gra-

dients of all detected vehicles with respect to the radar input

are prominent. However, there are two exceptional cases

in the second scene. First, at the top of the figure, MVD-

Net mistakenly recognizes a vehicle, resulting in prominent

gradients with respect to the radar input. Second, MVDNet

fails to detect the top brown vehicle and the bottom blue

vehicle, and their gradients with respect to both lidar and

radar inputs are close to zero. The exceptional cases indi-

cate that fusing lidar and radar still cannot cover all cases,

mainly due to the reduced visible range of the lidar in foggy

weather condition and low radar resolution at far range. In-

tegrating a more diverse set of sensors, e.g., Doppler radar

and RGBD camera, may further improve the robustness of

the detector, which we leave as future work.

Fig. 3c further shows the point clouds within the reduced

visible range of the lidar and Fig. 3d shows the point-wise

gradients. On the one hand, most fog points contribute

nearly zero gradients to the features of the detected vehi-

cles, indicating that MVDNet is capable of denoising lidar

point clouds. On the other hand, some points around the

ground-truth boxes of vehicles also have prominent gradi-

ents, meaning that MVDNet additionally relies on the rep-



(a) Ground-truth (b) PIXOR [11] (c) PointRCNN [5] (d) PointPillars [3] (e) F&F [4] (f) DEF [2] (g) MVDNet (Ours)

Figure 4. Examples of 360◦ detection results of different detectors. The ground-truth is in various colors while the detection is in green.

resentative surrounding background of vehicles for detec-

tion, similar to existing detectors [5] that explicitly exploit

background information.

8. Visualization of Vehicle Detection
We further present additional results of different detec-

tors in Fig. 4. Similar to the results in Fig. 11 of the main pa-

per, all lidar-only detectors miss some vehicles and mistak-

enly recognize some background areas as vehicles. Among

the four lidar-only detectors, F&F detects more vehicles

thanks to the use of historical information. However, F&F

also generates more false alarms, especially around moving

vehicles, e.g., the top vehicles in the fourth scene. We think

that F&F detects successive locations of moving vehicles in

different lidar frames due to the symmetrical fusion of the

lidar frames at the early feature extraction stage. While us-

ing both lidar and radar signals and thus detecting vehicles

beyond the reduced visible range of the lidar, DEF has more



(a) Annotated keyframe #1 (b) Annotated keyframe #2

Figure 5. Illustration of two successive keyframes (separated by 20 frames) of ground-truth oriented bounding boxes (white) labeled with

Scalabel [12]. For the intermediate frames, bounding boxes of vehicles are first linearly interpolated from their bounding boxes in the

keyframes and then manually adjusted and verified by humans to ensure the quality of the ground-truth.

false alarms and missing targets than MVDNet, mainly due

to its specialized early fusion design for front view images.

In contrast, thanks to late fusion design, MVDNet consis-

tently outperforms its counterparts in terms of detection and

localization accuracy.

9. Dataset Annotation Details
We create a procedurally-generated dataset from the Ox-

ford Robot Car [1]. To train models for foggy weather, we

use the fog model in DEF [2] to randomly foggify the lidar

point clouds. To generate ground-truth oriented bounding

boxes, we use an open-sourced labeling tool Scalabel [12].

The interface of Scalabel and two example keyframes are

shown in Fig. 5. To ensure the quality of the ground-truth

labeling, we hire human annotators to generate 3D bound-

ing boxes for keyframes first by asking them to provide re-

shaped, shifted, and rotated boxes from an initial cube that

can best fit the vehicles. Then, labels of the intermediate

frames are automatically initialized by linear interpolation

between two successive keyframes. Since vehicles move at

unknown speed and acceleration, the interpolation results

can be inaccurate. To resolve this problem, we further re-

quest annotators to manually adjust each interpolated box

using the same interface and verify the annotation results for

all the frames. Overall, we follow the best practices of man-

ual labeling to obtain clean and accurate training dataset.

10. Network Architecture and Training Details
To enable broader research community to reproduce

MVDNet, we present architecture details of MVDNet-Fast

and MVDNet in Fig. 6. Following the architecture overview

in Fig 3 in the main paper, the model consists of 4 parts, i.e.,

feature extractor (blue), proposal generator (green), fusion

network (red), and detection head (brown). MVDNet gen-

erates three types of outputs. Precisely, the class score con-

sists of two values, indicating the likelihood of the predic-

tion being a vehicle or the background. The bounding box

consists of five values, i.e., the 2d locations, width, height,

and orientation angle of the detected vehicle. The box di-

rection consists of two values, indicating the direction of

the detected vehicle. The difference between MVDNet and

MVDNet-Fast is that the latter reduces the number of chan-

nels of the fusion network and the detection head by 8×.

Fig. 7 shows the detailed architecture of the lidar re-

construction model. Compared with MVDNet, a U-Net is

prepended to fuse the lidar and radar input at the early stage,

and the attention-based sensor fusion is removed. The lidar

reconstruction model is trained with two steps. First, the

U-Net is trained with a binary cross-entropy loss between

the occupancy maps and a smooth l1 loss between the in-

tensity map of the reconstructed and clear lidar data, i.e.,

Lrec = LBCE,occ + Ll1,int. To train the U-Net, we use

the Adam optimizer with an initial learning rate of 0.01, de-

cay the learning rate by a factor of 0.1 every 20K iterations,

and train the model for 80K iterations from scratch. Each

iteration takes the input with a batch size of 4. Second, the

whole lidar reconstruction model, including the U-Net, is

trained with the reconstruction loss Lrec and the task loss

of MVDNet (Eq. 3 in the main paper). The training setting

is the same as MVDNet (Sec. 4.1 in the main paper).

11. Limitations and Future Work
Fusion of extra sensors. MVDNet fuses lidar and radar

signals to improve the performance of vehicle detection in

foggy weather condition. However, the fusion of lidar and

radar still cannot cover all vehicles in practice (e.g., false

alarms and missing cases in the second scene in Fig. 3),

mainly due to the low resolution and noises of radar signals

at far distances. We plan to exploit more diverse sensors

in future work, e.g., Doppler radar, sonar, RGBD camera,

infrared camera, to achieve more robust vehicle detection,

especially in critical adverse weather conditions.

Real-time vehicle detection for autonomous driving. As

shown in Fig. 8 in the main paper, the runtime of MVD-

Net with four historical frames is 110.7 ms (approximately

9 FPS). When processing only a single frame, MVDNet’s

runtime can be reduced to 54.9 ms (18 FPS) with some

loss of detection accuracy. Overall, MVDNet achieves sub-

second level processing speed. However, it still does not
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Figure 6. The detailed architecture of MVDNet and MVDNet-Fast. The red numbers in parentheses are the channels of MVDNet-Fast. +
means element-wise addition, × means matrix multiplication, and C means concatenation of two tensors.

support real-time vehicle detection compared to the speed

of high-rate sensors, such as cameras (≥ 30 FPS). As a large

portion of time cost comes from the processing of historical

frames, it is possible to reduce the processing time by iden-

tifying reusable parts of historical results [10]. Besides, we

plan to explore network compression methods [7, 9] to im-

prove the detection efficiency in future work.
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