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1. Architecture Design and Setup

We provide more experimental details on the five datasets:
Digits [20], CIFAR-10-C [6], SYTHIA [16], Amazon Re-
views [1], and Google Commands [21]. In learnable label
mixup, we use Gaussian parameters of feature perturbations
from the first layer. We choose specific backbone models,
and design different auxiliary models as well as training
strategies according to characteristics of each dataset.

In Digits [20], the backbone model is conv-pool-conv-
pool-fc-fc-softmax. There are two 5× 5 convolutional layers
with 64 and 128 channels respectively. Each convolutional
layer is followed by a max pooling layer with the size of 2×
2. The size of the two Fully-Connected (FC) layers is 1024
and the size of the softmax layer is 10. We inject perturba-
tions to latent features of the two convolutional layers. The
detailed architecture is presented in Fig. 1 (a). We employ
Adam [8] for optimization with batch size of 32. We train
for total 10K iterations with learning rate of 10−4.

In CIFAR-10-C [6], we evaluate our method on two back-
bones: AllConvNet (AllConv) [18] and Wide Residual Net-
work (WRN) [22] with 40 layers and the width of 2. In
AllConv [18], the model starts with three 3 × 3 convolu-
tional layers with 96 channels. Each layer is followed by
batch normalization (BN) [7] and GELU. They convert the
original image with three channels to feature maps of 96
channels. Then, the features go though three 3 × 3 convolu-
tional layers with 192 channels. After that, the features are
fed into two 1 × 1 convolutional layers with 192 channels
and an average pooling layer with the size of 8 × 8. Finally,
a softmax layer with the size of 10 is used for classification.
In WRN [22]. The first layer is a 3×3 convolutional layer.
It converts the original image with three channels to feature
maps of 16 channels. Then the features go through three
blocks of 3×3 convolutional layers. Each block consists of
six basic blocks and each basic block is composed of two
convolutional layers with the same number of channels. And
their channels are {32, 64, 128} respectively. Each layer
is followed by batch normalization (BN) [7]. An average
pooling layer with the size of 8× 8 is appended to the output

of the third block. Finally, a softmax layer with the size of 10
is used for prediction. In both AllConv [18] and WRN [22],
we only inject perturbations to the latent features of the first
convolutional layer. We also tried to inject perturbations in
the next few layers or blocks, however, we found the perfor-
mance degraded severely mainly due to its large effect on
the semantic feature, i.e., outputs before the activation layer.
The detailed architecture with backbone of WRN is shown
in Fig. 1 (b). Following the training procedure in [22], we
use SGD with Nesterov momentum and set the batch size to
128. The initial learning rate is 0.1 with a linear decay and
the number of epochs is 200.

In SYTHIA [16], we use FCN-32s [11] with the backbone
of ResNet-50 [5]. The model consists of a feature extractor
and a classifier. We use ResNet-50 [5] as the feature extrac-
tor, which is composed of a 7×7 convolutional layer with
64 channels and four convolutional blocks. The classifier
consists of a 3×3 convolutional layer with 512 channels, a
1×1 convolutional layer with 14 channels, and a bilinear
layer used to up-sample the coarse outputs to the original
size. We use Adam with the learning rate α = 0.0001. We
set the batch size to 8 and the number of epochs to 50.

In Amazon Reviews [1], reviews are assigned binary labels
- 0 if the rating of the product is up to 3 stars, and 1 if the
rating is 4 or 5 stars. The extracted features are fed into
two FC layers with the size of 50. A softmax layer with
the size of two is used to classify the sentiment of reviews
into “positive” or “negative”. All models are trained using
Adam [8] optimizer with learning rate of 10−4 and batch size
of 32 for 1000 iterations. In Google Commands [21], the mel-
spectrogram features are fed into LeNet [10] as one-channel
input. The original image is fed into two 5× 5 convolutional
layers with the channels of 6 and 16, respectively. Next, the
features go through two FC layers with the size of 120 and
84, respectively. Finally, a softmax layer with the size of 30
is leveraged to predict the spoken word. Models are trained
using Adam [8] with learning rate 10−4 and batch size of
128 for 30 epoches. For the corrupted test sets, the range
of “amplitude change” is (0.7, 1.1). The maximum scales
of “pitch change”, “background noise”, and “stretch” are
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Figure 1: Architectures of main and auxiliary models. From left to right: (a) Digits [20]; (b) CIFAR-10-C [6]; (c) SYTHIA [16];
(d) Google Commands [21], and (e) Amazon Reviews [1].
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Figure 2: Classification accuracy on fifteen corruptions of CIFAR-10-C using
the backbone of WRN (40-2). Following Fig. 3, the accuracy of each corruption
with the highest level of severity is presented. Our method achieves 20%
improvements on corruptions of noise.
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Figure 3: Classification accuracy (%) on
five levels of corruption severity. Our
method has the smallest degradation under
the highest level of corruption severity.

0.2, 0.45, and 0.2, respectively. The maximum shift of “time
shift” is 8. In the experiments of Amazon Reviews [1] and
Google Commands [21], feature perturbations are appended
to the first layer. The detailed architectures used for Google
Commands [21] and Amazon Reviews [1] are presented in
Fig. 1 (c) and (d), respectively.

2. Additional Results
2.1. Image Classification

1) Classification accuracy on CIFAR-10-C [6]. We
train all models on clean data, i.e., CIFAR-10, and test them
on corruption data, i.e., CIFAR-10-C. In this case, there are
totally 15 unseen testing domains. We compare our method
with the other three methods for domain generalization:
ERM [9], GUD [20], and M-ADA [15]. The classification
results on corruptions across five levels of severity are shown
in Fig. 3. As seen, our method outperforms other methods
across all levels of corruption severity. Specifically, the gap
between M-ADA [15] (previous SOTA) and our method gets
larger with the level of severity increasing. Fig. 2 shows
more detailed comparison of all corruptions at the highest

Method |T | U →M M → S S →M Avg.
DIRT-T [19]

All
- 54.50 99.40 -

SE [3] 98.07 13.96 99.18 70.40
SBADA [17] 97.60 61.08 76.14 78.27
FADA [12] 7 91.50 47.00 87.20 75.23
CCSA [13] 10 95.71 37.63 94.57 75.97

Ours 7 92.97 58.12 89.30 80.13
10 93.16 59.77 91.67 81.53

Table 1: Few-shot domain adaptation accuracy (%) on
MNIST(M), USPS(U), and SVHN(S). |T | denotes the number
of target samples (per class) used during model training.

level of severity. As seen, our method achieves substantial
gains across a wide variety of corruptions, with a small drop
of performance in only two corruption types: brightness and
contrast. Especially, accuracy is significantly improved by
20% on corruptions of noise. Results demonstrate its strong
generalization capability on severe corruptions.

2) Few-shot domain adaptation. We conduct three
few-shot domain adaption tasks: USPS(U)→MNIST(M),
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Figure 4: Examples of semantic segmentation on
SYTHIA [16]. From left to right: (a) images from unseen
domains; (b) ground truth; (c) results of ERM [9]; (d) results
of M-ADA [15]; and (e) results of our method. Best viewed
in color and zoom in for details.

MNIST(M)→SVHN(S), and SVHN(S)→MNIST(M). Results
of the three tasks are shown in Tab. 1. As seen, the result
on the hardest task (M→S) is even competitive to that of
SBADA [17] which requires all images of the target domain
during training. Specifically, our method achieves the best
performance on the average of the three tasks. Note that,
when the target domain changes, our method only needs to
fine-tune the pre-trained model with a few samples within
a small number of iterations, while other methods have to
train entirely new models.

2.2. Semantic Segmentation

In the experiment on SYTHIA [16], Highway is the source
domain, and New York-like City together with Old Euro-
pean Town are unseen domains. Visual comparison on
SYTHIA [16] is shown in Fig. 4. Results demonstrate that
our model can better generalize to the changes of locations,
weather, and time.

2.3. Text Classification

We train the models on one source domain, and evaluate
them on the other three domains. Tab. 2 shows the results of
text classification on Amazon Reviews [1] . We found that
our method outperform previous ones on all the three unseen
domains when the source domain is “books” or “kitchen”.
Specially, our method outperforms ERM [9] by 3.5% on
“books→ electronics”. We observe that there is a little drop
in accuracy on “dvd → electronics” and “electronics →
dvd”. One possible reason is that “electronics” and “dvd”
may share a similar distribution. And our method creates
large distribution shift, degrading the performance on them.

2.4. Ablation Study

We study the effect of two important hyper-parameters
of our model: the number of Monte-Carlo (MC) samples
(K) and the coefficient of constraint (β). We report the av-
erage accuracy on the four unseen domains (MNIST-M [4],
SVHN [14], SYN [4], and USPS [2]). We present the classifi-
cation results under different hyper-parameters in Fig. 5.

1) Number of MC samples (K). The classification ac-
curacy on Digits [20] with different K is shown in Fig. 5
(a). We notice that the average accuracy gradually increases
from K = 1 to K = 15 and remains stable when K = 20.

2) Coefficient of constraint (β). The constraint is used
to make adversarial domain augmentation satisfy the worst-
case constraint. Results on Digits [20] with different β is
presented in Fig. 5 (b). As seen, the accuracy falls dramat-
ically when β = 10, because large β may severely limit
the domain transportation and create domain augmentations
similar to the source.
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Figure 5: Ablation study on hyper-parameters K and β. The average accuracy on the four unseen domains (MNIST-M [4],
SVHN [14], SYN [4], and USPS [2]) is presented. We set K = 15 and β = 1 according to the best classification accuracy.
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