
Algorithm 1: Stitching Video Panoptic Predictions
Input : Panoptic prediction Pt for image t, and

panoptic prediction Rt for image t+ 1
when concatenated with image t.

Output: In-place stitched panoptic predictions Pt.
for t = 1, 2, ..., T − 1 do

Increase all instance IDs of Pt+1 by the
maximum of the instance IDs of P1 to Pt;

// Find all overlapping region pairs C between
// Rt and Pt+1 with the same classes.
Let S = [(r, p) | r ∈ Rt ∧ p ∈ Pt+1 ∧ r∩ p > 0];
Let C = [(r, p) | (r, p) ∈ S ∧ cls(r) = cls(p)]
where cls(·) denotes the class;

Sort C = [(r, p)] with respect to IoU(r, p) in
ascending order;

// For each region in Rt, M stores the region in
// Pt+1 having the largest IoU with it. N stores
// the opposite direction.
Let M, N be empty dictionaries;
for (r, p) ∈ C do

M[r] = p and N[p] = r;
for r → p ∈M do

// Propagate IDs from Rt to Pt+1 and Rt+1

// if r and p map to each other in M and N.
if r = N[M[r]] then

if t < T − 1 then
Assign the region in Rt+1 that has

the ID of p with the ID of r;
Assign the region of p in Pt+1 with the

instance ID of r in Rt;

A. Stitching Algorithm

Alg. 1 shows the details of the algorithm to stitch video
panoptic predictions to form predictions with consistent IDs
throughout the entire sequence. We split the panoptic pre-
diction of the concatenated image pair t and t + 1 in the
middle, and use Pt and Rt to denote the left and the right
prediction, respectively. This makes Pt the panoptic pre-
diction of image t, and Rt the panoptic prediction of image
t + 1 with instance IDs that are consistent with those of
Pt. The objective of the algorithm is to propagate IDs from
Rt to Pt+1 so that each object in Pt and Pt+1 will have the
same ID. The ID propagation is based on mask IoU between
region pairs. For each region r in Rt, we find the region p
in Pt+1 that has the same class and the largest IoU with it.
We use M to store this mapping. Similarly, for each region
p in Pt+1, we also find the region r in Rt that has the same
class and the largest IoU with it. We use N to store this
mapping. If a region r of Rt and a region p of Pt+1 are
matched to each other (i.e. M(r) = p and N(p) = r), then
we propagate the ID from r to p.

Pedestrians Cars
Method sMOTSA MOTSA IDS sMOTSA MOTSA IDS

TrackR-CNN [77] 46.8 65.1 78 76.2 87.8 93
MOTSNet [64] 54.6 69.3 - 78.1 87.2 -
MOTSFusion [55] 58.9 71.9 36 82.6 90.2 51
PointTrack [92] 62.4 77.3 19 85.5 94.9 22

ViP-DeepLab + KF 68.3 83.2 15 86.0 94.7 52

Table 6: Results on KITTI MOTS validation set.

Ldepth weight k = 1 k = 2 k = 3 k = 4 VPQ absRel DVPQ

0.1 68.9 61.9 58.8 56.5 61.5 9.51 51.3
1.0 69.0 62.0 58.7 56.5 61.6 7.21 55.1
10 67.8 61.1 57.5 55.5 60.5 6.54 54.3

Table 7: ViP-DeepLab trained with different training
weights for Ldepth on Cityscapes-DVPS.

B. More Experiments
KITTI MOTS Validation Set We first evaluate ViP-
DeepLab on the validation set of KITTI MOTS bench-
mark [77]. Tab. 6 shows the comparisons between ViP-
DeepLab and the previous methods. We adopt the same
strategy as we used for training models for KITTI MOTS
Leaderboard except that the training data used in here does
not include the validation set. As shown in the table, our
method equipped with Kalman filter outperforms the previ-
ous methods by a large margin.

Effects of Depth Loss Weight Next, we study the effects
of different training weights for the depth loss Ldepth. In the
previous experiments on Cityscapes-DVPS and SemKITTI-
DVPS, we use the depth loss defined by Equ. (4), which has
a loss weight of 1.0. For the purpose of ablation study, we
change the training weight from 1.0 to 10 and 0.1. The re-
sults are shown in Tab. 7. From the table we can see that
as the Ldepth weight increases, ViP-DeepLab performs bet-
ter on the sub-task monocular depth estimation (i.e. absRel
becomes lower), but worse on the sub-task video panop-
tic segmentation (i.e. VPQ becomes lower). This is consis-
tent with our intuition that a larger Ldepth weight makes the
model focus more on the task of monocular depth estima-
tion. The metric that matters most here is DVPQ, which
unifies the metrics of both sub-tasks. In order to get a high
DVPQ score, the predictions must be accurate on both tasks.
Therefore, finding a balanced Ldepth weight is critical to get
a high DVPQ. As the table shows, setting Ldepth weight to
1.0 achieves the best results among the three choices.

KITTI Depth Validation Set Finally, we show the per-
formance of ViP-DeepLab on the official validation set of



Method δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ absRel↓ sqRel↓ RMSE↓ RMSElog↓ SILog↓

[20] 95.77 99.21 99.75 6.99 1.27 2.86 0.104 9.73
Ours 96.27 99.41 99.81 5.72 0.96 2.58 0.092 8.47

Table 8: Results on the official KITTI depth validation set. ↑: The higher the better. ↓: The lower the better.

Class HOTA DetA AssA DetRe DetPr AssRe AssPr LocA sMOTSA

Cars 76.38 82.70 70.93 88.70 88.77 75.86 86.00 90.75 81.03
Pedestrians 64.31 70.69 59.48 75.71 81.77 67.52 74.92 84.40 68.76

Table 9: ViP-DeepLab performance on the KITTI MOTS test set for the new metrics.
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Figure 8: The architecture of Cascade-ASPP, which is employed as Dense Multi-scale Context in the next-frame instance
branch. It cascades four ASPP modules with the outputs densely connected.

Method STQ AQ SQ

VPSNet [42] 0.50 0.35 0.72
Ours 0.64 0.52 0.78

Table 10: STQ comparison on Cityscapes-VPS.

KITTI depth benchmark [74]. The validation set has 1,000
cropped images. Tab. 8 compares our method with previous
methods that report their performances on it. Our method
outperforms the previous methods by a large margin on all
the metrics.

New Metrics on KITTI MOTS The KITTI MOTS
benchmark changed their ranking metrics [56]. Tab. 9 re-
ports the performance of ViP-DeepLab for the new metrics.

STQ on Cityscapes-VPS Table 10 also reports the
STQ [83] performance comparison between our ViP-
DeepLab and VPSNet [42].

C. Cascade-ASPP
Fig. 8 shows the architecture of Cascade-ASPP. It is used

as the module Dense Multi-scale Context in the next-frame
instance branch shown in Fig. 3. It cascades four ASPP

modules with their outputs densely connected. The moti-
vation of Cascade-ASPP is to dramatically increase the re-
ceptive field of the next-frame instance branch. As demon-
strated in Tab. 3, Cascade-ASPP (i.e. DenseContext) im-
proves the performances of video panoptic segmentation on
Cityscapes-VPS compared with the single ASPP variant.

D. More Visualizations
We show more prediction visualizations in Fig. 9,

Fig. 10, Fig. 11, and Fig. 12. We choose four sequences
from 50 validation sequences of Cityscapes-DVPS, and the
results are shown in Fig. 9 and Fig. 10. As each sequence
contains only 6 frames, the figures show all the frames
of the four sequences. Here, the video panoptic predic-
tions demonstrate the results after the stitching algorithm,
so each instance has the same instance ID in all the frames.
SemKITTI-DVPS results are shown in Fig. 11 and Fig. 12.
We present the results on two 16-frame video clips from
the validation sequence. From the visualizations we can see
that ViP-DeepLab is capable of outputting accurate video
panoptic predictions and high quality depth predictions.



Figure 9: Prediction visualizations on Cityscapes-DVPS. From left to right: input image, temporally consistent panoptic
segmentation prediction, monocular depth prediction, and point cloud visualization.



Figure 10: Prediction visualizations on Cityscapes-DVPS. From left to right: input image, temporally consistent panoptic
segmentation prediction, monocular depth prediction, and point cloud visualization.



Figure 11: Prediction visualizations on SemKITTI-DVPS. From left to right: input image, temporally consistent panoptic
segmentation prediction, monocular depth prediction, and point cloud visualization.



Figure 12: Prediction visualizations on SemKITTI-DVPS. From left to right: input image, temporally consistent panoptic
segmentation prediction, monocular depth prediction, and point cloud visualization.


