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1. Overview

This supplementary material provides more net-
work details, experimental results, and visualizations
of our semantic segmentation results.

2. Network Details

In Figure 2 of the main paper, we present the gen-
eral architecture of our semantic segmentation net-
work as well as the structure of the Bilateral Context
Block. In this section, we provide more details about
the different components of our network.

2.1. Key Modules

Feature Extractor: As stated, we apply a single-
layer MLP containing eight 1x1 kernels to extract
the semantic context F from the input information
T € RV*Cin where N is the number of input points.
Hence, F is acquired as:

F = ReLU (BN(COHV?M(I))), F e RV*8,

where Conv denotes a convolution layer whose sub-
script is the kernel size, and the superscript is the num-
ber of kernels. BN represents a batch normalization
layer, while ReLU is a ReLLU activation layer. Later
on, F is forwarded to the Bilateral Context Module,
together with the 3D coordinates P € RN *3,

Bilateral Context Module: In practice, we apply five
Bilateral Context Blocks with Farthest Point Sampling
(FPS) to realize the Bilateral Context Module (5). Us-
ing the same annotations of the main paper’s Section
4.2, the extracted multi-resolution feature maps are:

{S51,82,83,84,855} = B(P, F);
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Figure 1: The architecture of the Adaptive Fusion
Module. All the annotations are consistent with the
items in Section 3 of the main paper.

where:

N N N
S, eRT*®2 5 c RI6X12 55 € R#17256,

N N
84 c Rﬁx512’ 85 c RmxlOM‘

Particularly, the downsampling ratios and feature
dimensions are simply adopted from [6], since we
mainly focus on the structure design rather than fine-
tuning the hyper-parameters in this work.

Adaptive Fusion Module: In addition to Algorithm
1 and Section 3.2 in the main paper, we also illus-
trate the architecture of the Adaptive Fusion Module in
Figure 1 as a complement. As described in Section
4.3 of the main paper, we gradually upsample the ex-
tracted feature maps {S1, S2, S3, S4, S5 }, respectively.



Testing Area | mAcc  OA  mloU | ceiling floor wall beam column window door table chair sofa bookcase board clutter
Area 1 877 895 763 96.5 954 803 654 58.8 78.0 843 707 829 78.0 60.9 732 679
Area 2 71.1 86.6 578 87.1 951 800 19.8 333 475 693 456 831 528 50.7 33.1 54.4
Area 3 89.7 917 80.0 95.8 982 833 744 40.5 86.0 88.5 744 837 79.0 73.6 889 739
Area 4 779 86.1 643 948 97.1 78.6 53.0 48.6 30.8 61.0 674 77.0 70.1 51.3 448 61.6
Area 5 73.1 889 654 929 979 823 00 23.1 65.5 649 785 875 614 70.7 68.7 572
Area 6 920 925 818 964 975 862 799 81.0 78.5 90.1 77.1 88.1 65.1 72.4 797 712
6-fold 83.1 889 722 933 968 816 619 49.5 65.4 733 720 837 675 64.3 67.0 624

Table 1: Detailed semantic segmentation results (%) on S3DIS [1] dataset. (mAcc: average class accuracy, OA:
overall accuracy, mloU: mean Intersection-over-Union.““6-fold”: 6-fold cross-validation result.)

Method OA  mloU m?;r-rzlierllde Itl:;rZri? Veghelt%i}t]ion VegleT:tion buildings }clzzz)de Zcr?élf?crf cars
SnapNet [3] 88.6 59.1 82.0 77.3 79.7 229 91.1 18.4 37.3 64.4
ShellNet [10] | 932  69.3 96.3 90.4 83.9 41.0 94.2 34.7 439 70.2
GACNet [9] 919 70.8 86.4 77.7 88.5 60.6 94.2 37.3 43.5 77.8

SPG [7] 94.0 732 97.4 92.6 87.9 44.0 83.2 31.0 63.5 76.2
KPConv [8] 929 74.6 90.9 82.2 84.2 479 94.9 40.0 77.3 79.7

RandLA-Net [6] | 94.8 77.4 95.6 91.4 86.6 515 95.7 51.5 69.8 76.8
Ours 943 753 96.3 93.7 87.7 48.1 94.6 43.8 58.2 79.5

Table 2: Semantic segmentation (reduced-8) results (%) on Semantic3D [5] dataset.

In this case, the upsampled full-sized feature maps are
{51, S~2, 53, S~4, 55}, all of which are in RNX32.

Then, for each upsampled full-sized feature map,
we use a fully-connected layer (FC, and its super-
script indicates the number of kernels) to summarize
the point-level information:

m=FCY(Sn), émcRY;

where VS,, € {51, Sa, 83,84, 55} Subsequently, we
concatenate the {¢1, 2, P3, P4, ¢5 }, and point-wisely
normalize them using softmax function:

® = softmax(concat(¢1, g2, ¢3, ¢4, ¢5)), P € RV

Next, we separate ¢ channel-by-channel, and obtain
the fusion parameters: {®i, Py, P3, Dy, P5}, all of
which are in RYV. Hence, the point-level adaptively
fused feature map is calculated as:

Sout = P1 Xgl-l-(l)g ><52+q>3 Xg§3+(1)4><54+(1)5 x557

where S, € RV*32,

2.2. Predictions

Based on S,,;, we utilize three fully-connected lay-
ers and a drop-out layer (DP, and the drop-out ra-
tio shows at the superscript) to predict the confidence
scores for all () candidate semantic classes:

Vyprea = FCO <DP0'5 (FC32 (FC64(Sout))>> ,

where Vp,eq € RN*Q
2.3. Loss Function

Equation 7 of the main paper formulates the over-
all loss L; of our network based on the cross-entropy
loss Lo g and the augmentation loss £, for each Bi-
lateral Context Block.

In practice, our Bilateral Context Module gradually
processes a decreasing number of points (N — % —
% — 6ﬂ4 — WNG) through five blocks. Empirically,
we set the weights {0.1,0.1,0.3,0.5,0.5} for the cor-
responding five augmentation losses, since we aim to
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Figure 2: Visualization of intermediate features and semantic segmentation results for an office scene in S3DIS [1]
dataset. P denotes the 3D coordinates of the point cloud, and F presents the semantic information acquired by
the Feature Extractor (Section 4.1 in the main paper). Further, S means the output of our Bilateral Context Block

(Section 3.1).

Model | Description mloU (%)
No Baseline model 60.8
Ny Efficient model 64.8
Ny Dilated model 62.5
N3 Equal-weighted model 64.0
Ny Simplified model 63.5
Ns Proposed model 65.4

Table 3: Ablation study about different variants of our
network, tested on Area 5, S3DIS [1] dataset.

provide more penalties for lower-resolution process-
ing. Therefore, the overall loss for our network is:

Lai =Lcp+
0.1-£1+0.1- Lo+
03-L3+05-L4+05-Ls.

3. Experiments

3.1. Areas of S3DIS

We include more experimental data about our net-
work’s semantic segmentation performance. To be
specific, Table 1 shows our results for each area in

Layer 1 2 3 4 5
#Points 40960 | 10240 | 2560 640 160
3D Space Mean J12 124 147 185 | [ 154

Variance | | 0.1 | [ 0.2 | ] 0.5 12 113
Mean 145 | 1693 | [ 814 | [ 124 | | 317
Variance | | 11.9 | | 16.3 | | 24.7 | | 46.2 | | 104

Feature Space

Table 4: The general changes (x10~3) of neighbor-
hoods by involving bilateral offsets.

the S3DIS dataset, including overall accuracy, aver-
age class accuracy, and concrete IoUs for 13 semantic
classes. To evaluate each area, we apply the rest five
areas as the training set.

3.2. Reduced-8 Semantic3D

Further, Table 2 presents our online evaluation re-
sults on the smaller test set (i.e., reduced-8, which has
four scenes including about 0.1 billion points) of the
Semantic3D dataset. Comparing with Table 2 in the
main paper (i.e., results of semantic-8, which contains
15 scenes with 2 billion points), we conclude that our
semantic segmentation performance regarding large-
scale data is relatively better.

3.3. Ablation Study

In addition to the specific ablation studies (Section
5.3 in the main paper) about our Bilateral Context



Block and Adaptive Fusion Module respectively, we
also conduct an ablation study to investigate some vari-
ants of our network:

e Baseline model: We replace both our Bilateral
Context Block and Adaptive Fusion Module with
their baseline forms, which are explained in the
ablation studies of the main paper.

o Efficient model: We apply the random sampling
instead of the Farthest Point Sampling (FPS).

e Dilated model: We use dilated-knn [4] to search
the neighbors of each point, in order to increase
the size of point’s receptive field. The dilated fac-
tor d = 2.

e Equal-weighted model: We set an equal weight
(w; = 0.3) for all of the augmentation losses in
Equation 7 (i.e., calculating the overall loss L;;)
of the main paper.

o Simplified model: We only study four resolu-
tions of the point cloud through the Bilateral Con-
text Module. The number of points decreases as:

N — % — I—J\é — 6%, while the number of chan-

nels goes as: 16 — 64 — 128 — 256.

Table 3 indicates that such an efficient random sam-
pling (N1) cannot perform as effectively as FPS does
since the randomly sampled subsets can hardly retain
the integrity of inherent geometry. As there is always
a trade-off between the network’s efficiency and ef-
fectiveness, we look forward to better balancing them
in future work. Besides, increasing the size of the
point’s receptive field (N2) as [4] may not help in our
case. Further, we observe that it is not optimal to use
the equal-weighted Bilateral Context Blocks (N3) for
multi-resolution point clouds. Moreover, our network
can be flexibly assembled: for an instance of model Ny
that consists of fewer blocks, even though the perfor-
mance is reduced, it consumes less GPU memory.

4. Visualization
4.1. Bilateral Context Block

In Figure 2, we present the Bilateral Context
Block’s output features in a heat-map view. Particu-
larly, we observe that the Bilateral Context Block can

clearly raise different responses for close points (in red
frames) that are in different semantic classes.

Besides, we calculate the average neighbor-to-
centroid Euclidean-distances and average neighbor-
hood variances in 3D space (Equation 1 in the main
paper) and feature space (Equation 2), using the S3DIS
samples. Table 4 shows that shifted neighbors get
closer to centroids as expected, in both 3D and fea-
ture spaces. Further, the variances inside the neighbor-
hoods also drop. In general, the shifted neighbors tend
to form compact neighborhoods.

4.2. Visualizations and Failure Cases

We provide more visualizations of our seman-
tic segmentation network’s outputs and some failure
cases. Specifically, Figure 3 presents our results on six
different types of rooms, which are conference, WC,
storage, hallway, lobby, office rooms, respectively.
Unfortunately, we find that the proposed method is not
competent enough for distinguishing the objects that
are in similar shapes. The main reason is that the net-
work relies on the local neighborhood of each point,
while lacks the geometric information about the spe-
cific object that each point belongs to. In the 3rd row
of Figure 3, beam is incorrectly classified as door since
it looks like the doorframes; while wall is wrongly pre-
dicted as board or clutter in the rest of rows.

In Figure 4, we show the general semantic seg-
mentation performances on some large-scale point
clouds of typical urban and rural scenes. Although
the ground-truths of Semantic3D’s test set are unavail-
able, our semantic predictions of these scenes are vi-
sually plausible as the dataset contains a huge amount
of points labeled in just a few semantic classes.

In addition, we compare our results against the
ground-truths on the validation set (i.e., Sequence 08)
of SemanticKITTI dataset in Figure 5. Particularly,
we illustrate some 3D point cloud scenes in the views
of 2D panorama, in order to clearly show the failure
cases (highlighted in red color). In fact, the proposed
network is able to find some small objects that are
semantically different from the background, however,
the predictions are not accurate enough since we only
use the 3D coordinates as input. As SemanticKITTTI is
made up of the sequences of scans, in the future, we
will take the temporal information into account.
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Figure 3: Examples of our semantic segmentation results of S3DIS [1] dataset. The first column presents the
input point cloud scenes (“Input”) of some indoor rooms. The second column shows the semantic segmentation
predictions of our network (“Prediction”), while the last column indicates the ground-truths (“Ground-Truth”).
The main differences are highlighted in red frames.
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Figure 4: Examples of our semantic segmentation predictions of Semantic3D [5] dataset. The first row is about an
urban square, the second one shows a rural farm, the third one illustrates a cathedral scene, and the last is scanned
from a street view.
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Figure 5: Examples of our semantic segmentation predictions of SemanticKITTI [2] dataset. The first two rows
show the general 3D views of the input traffic scenarios (“Input”) and our semantic segmentation outputs (“Out-
put”), respectively. The remaining rows compare our predictions (“Ours”) and the ground-truths (“GT”) in 2D
panorama views, where the failure cases are highlighted in red frames.
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