Supplementary Materials to
”DAT:Training Deep Networks Robust to Label-Noise by Matching the Feature Distributions”
Anonymous CVPR 2021 submission

APPENDIX A

CODE

The algorithmic description of DAT without clean set is shown in Algorithm 1. To illustrate how DAT works, we also provide the code on the MNIST and CIFAR-10 datasets. The provided code is in the DAT-master folder, and the github url will be released after the review procedure.

Algorithm 1 DAT-Algorithm without clean set

\textbf{Input}: noisy training set D_ρ, α and β, learning rate η, epoch T, iteration N.

\begin{algorithmic}[1]
\FOR{$t = 1, 2, 3, \ldots, T$}
\STATE Shuffle training set D_ρ
\STATE Sample a subset D_s from D_ρ
\FOR{$n = 1, 2, 3, \ldots, N$}
\STATE Fetch mini-batch $\bar{\rho}$ from D_ρ
\STATE Fetch mini-batch \bar{S} from D_s
\STATE Calculate $L_{\tilde{cce}}$ on $\bar{\rho}$, L_{dis} on \bar{S}
\STATE Update $\theta_{h, h, g} = \theta_{h, h, g} - \nabla \theta_{h, h, g} L_{\tilde{cce}}$
\STATE Update $\theta_h = \theta_h + \alpha \nabla \theta_h L_{dis}$
\STATE Update $\theta_g = \theta_g - \beta \nabla \theta_g L_{dis}$
\ENDFOR
\ENDFOR

\textbf{Output}: $\theta_{h, h, g}$
APPENDIX B
THEORETICAL DERIVATION

In this section, we show the proof of Theorem 1 and the reason that \(h \Delta \mathcal{H} \)-divergence has a tighter upper bound. For ease of reference, we restate the definition of \(h \Delta \mathcal{H} \)-divergence and Theorem 1.

Definition 1: Given two feature distribution \(D^Z_\rho \) and \(D^Z_\tau \) extracted by a fixed \(g \), and a hypothesis class \(\mathcal{H} \) which is a set of binary classifiers. Through a given classifier \(h \), \(h \Delta \mathcal{H} \)-divergence between \(D^Z_\rho \) and \(D^Z_\tau \) is:

\[
d_{h \Delta \mathcal{H}}(D^Z_\rho, D^Z_\tau) = 2 \sup_{h \in \mathcal{H}} \left\{ \Pr_{z \sim D^Z_\rho} \left[h(z) \neq \hat{h}(z) \right] - \Pr_{z \sim D^Z_\tau} \left[h(z) \neq \hat{h}(z) \right] \right\}.
\]

The following Theorem 1 can be stated through the \(h \Delta \mathcal{H} \)-divergence.

Theorem 1: Let \(g \) be a fixed representation function from \(\mathcal{X} \) to \(\mathcal{Z} \), \(\mathcal{H} \) be the hypothesis class of Vapnik-Chervonenkis dimension \(d \). If random noisy samples of size \(m \) is generated by applying \(g \) from \(D^Z_{\rho-i.i.d.} \), then with probability at least \(1 - \delta \), the generalized bound of the clean risk \(\epsilon_c(h) \):

\[
\epsilon_c(h) \leq \epsilon^m_c(h) + \frac{1}{2} d_{h \Delta \mathcal{H}}(D^Z_\rho, D^Z_\tau) + \lambda,
\]

where

\[
\lambda = \epsilon_c(h^\ast) + \epsilon_\rho(h^\ast) + \sqrt{\frac{4}{m}(d \log \frac{2em}{d} + \log \frac{4}{\delta})},
\]

\[
h^\ast = \arg\min_{h \in \mathcal{H}} \epsilon_c(h),
\]

\[
\epsilon^m_\rho(h) = \frac{1}{m} \sum_{i=1}^m |f_\rho(z) - h(z)|.
\]

Proof 1: For a classifier \(h \), let \(Z_h \subseteq \mathcal{Z} \) be the characteristic subset for whose characteristic function is \(h \). The parallel notation \(Z_h^\ast \) and \(\hat{Z}_h \) are used for classifier \(h^\ast \) and \(\hat{h} \). Through the characteristic subset, we make \(\Pr_c[Z_h \Delta Z_h^\ast] = \Pr_{z \sim D^Z}[h(z) \neq h^\ast(z)] \), and the parallel notation \(\Pr_\rho \) is used.

\[
\epsilon_c(h) \leq \epsilon_c(h^\ast) + \Pr_c[Z_h \Delta Z_h^\ast]
\]

\[
\leq \epsilon_c(h^\ast) + \Pr_\rho[Z_h \Delta Z_h^\ast] + \{ \Pr_c[Z_h \Delta Z_h^\ast] - \Pr_\rho[Z_h \Delta Z_h^\ast] \}
\]

\[
\leq \epsilon_c(h^\ast) + \epsilon_\rho(h^\ast) + \epsilon_\rho(h) + \{ \Pr_c[Z_h \Delta Z_h^\ast] - \Pr_\rho[Z_h \Delta Z_h^\ast] \}
\]

\[
\leq \epsilon_c(h^\ast) + \epsilon_\rho(h^\ast) + \epsilon_\rho(h) + \sup_{h \in \mathcal{H}} \{ \Pr_c[Z_h \Delta Z_h^\ast] - \Pr_\rho[Z_h \Delta Z_h^\ast] \}
\]

\[
\leq \epsilon_c(h^\ast) + \epsilon_\rho(h^\ast) + \epsilon_\rho(h) + \frac{1}{2} d_{h \Delta \mathcal{H}}(D^Z_\rho, D^Z_\tau)
\]

InEq. (6) and InEq. (8) relies on the triangle inequality for classification error \[1\]. According to the standard Vapnik-Chervonenkis theory \[2\], we can then bound the true \(\epsilon_\rho(h) \) by its empirical estimate \(\epsilon^m_\rho(h) \):

\[
\epsilon_\rho(h) \leq \sqrt{\frac{4}{m}(d \log \frac{2em}{d} + \log \frac{4}{\delta})} + \epsilon^m_\rho(h)
\]

in summary:

\[
\epsilon_c(h) \leq \epsilon^m_\rho(h) + \lambda + \frac{1}{2} d_{h \Delta \mathcal{H}}(D^Z_\rho, D^Z_\tau)
\]

Before explaining why \(h \Delta \mathcal{H} \)-divergence has a tighter upper bound, we give a definition of \(\mathcal{H} \Delta \mathcal{H} \)-divergence \[3\] (the same analysis type is suitable for \(\mathcal{H} \)-divergence):

Definition 2: Given two feature distribution \(D^Z_\rho \) and \(D^Z_\tau \) extracted by a fixed \(g \), and a hypothesis class \(\mathcal{H} \) which is a set of binary classifiers. Through a given classifier \(h, \hat{h} \), \(h \Delta \mathcal{H} \)-divergence between \(D^Z_\rho \) and \(D^Z_\tau \) is:

\[
d_{h \Delta \mathcal{H}}(D^Z_\rho, D^Z_\tau) = 2 \sup_{h, \hat{h} \in \mathcal{H}} \left| \Pr_{z \sim D^Z_\rho} \left[h(z) \neq \hat{h}(z) \right] - \Pr_{z \sim D^Z_\tau} \left[h(z) \neq \hat{h}(z) \right] \right|.
\]

Assuming that the \(h \Delta \mathcal{H} \)-divergence is replaced by the \(\mathcal{H} \Delta \mathcal{H} \)-divergence in Theorem 1, the proof becomes of the following form.

Proof 2:
\[\epsilon_c(h) \leq \epsilon_c(h^*) + \Pr_c[Z_h \Delta Z_{h^*}] \]
\[\leq \epsilon_c(h^*) + \Pr_\rho[Z_h \Delta Z_{h^*}] + |\Pr_c[Z_h \Delta Z_{h^*}] - \Pr_\rho[Z_h \Delta Z_{h^*}]| \]
\[\leq \epsilon_c(h^*) + \epsilon_\rho(h^*) + \epsilon_\rho(h) + |\Pr_c[Z_h \Delta Z_{h^*}] - \Pr_\rho[Z_h \Delta Z_{h^*}]| \]
\[\leq \epsilon_c(h^*) + \epsilon_\rho(h^*) + \epsilon_\rho(h) + \sup_{h, h' \in H} |\Pr_c[Z_h \Delta Z_{h'}] - \Pr_\rho[Z_h \Delta Z_{h'}]| \]
\[\leq \epsilon_c(h^*) + \epsilon_\rho(h^*) + \epsilon_\rho(h) + \frac{1}{2} d_{\Delta H} (D_Z^c, D_Z^\rho) \]

Compared to InEq. (7), InEq. (15) add an additional absolute value, which is an absolute value inequality that allows the upper bound of the clean error rate \(\epsilon_c(h) \) to be amplified. In addition, InEq. (17) searches both \(h \) and \(h' \) in \(H \) to maximize the probability difference, which also amplifies the upper bound of \(\epsilon_c(h) \) even more compared to InEq. (9). As a result, \(h \Delta H \)-divergence has a tighter generalized upper bound.

REFERENCES