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1. Additional Quantitative Results

In this supplementary material, we also provide addi-
tional quantitative results on another large synthetic de-
raining dataset, namely Rain1200 [12]. Rain1200 contains
12,000 pairs of images for training, where the number of
images with light, medium and heavy rain is all 4,000.
Moreover, 1,200 synthetic image pairs are used for testing
as well. As indicated by Table 1, our method still outper-
forms the state-of-the-art methods on Rain1200.

Benefiting from our newly proposed dataset, we are able
to apply intermediate supervisions to our RSR and RDR
blocks in training. Here, we remove those intermediate su-
pervisions and only employ the final rain-free images as our
objective, marked CCN w/o ISV, to dissect the importance
of the intermediate supervision. As seen in Table 2, with-
out the intermediate supervision, the performance decreases
dramatically. The visual results of this baseline are shown
in Figure 6. This ablation study also indicates that our su-
perior deraining performance significantly benefits from our
complementary learning fashion and proposed dataset.

In our CCN, RSR and RDR blocks only share architec-
tures but not weights. In Table 2, we let different RSR
and RDR blocks share weights, named CCN w SHARE.
As expected, the performance of CCN w SHARE is infe-
rior to CCN. This is because sharing weights do not facil-
itate learning complementary deraining information. Fur-
thermore, the visual results of this baseline model are illus-
trated in Figure. 6.

2. Additional Qualitative Results

Here, we provide more visual results of our method as
well as other approaches in Figure 2, Figure 1, Figure 3,
Figure 5 and Figure 4. Figure 2, Figure 1 and Figure 3 illus-
trate the results of rain streak removal and Figure 5 shows
the results of raindrop removal on synthetic data. It can be
clearly seen that our method achieves not only higher PSNR
and SSIM scores but also clearer derained results compared
to the state-of-the-art. In Figure 4, our method removes real
rain images, thus demonstrating the generalization ability
of our model. Note that, all the methods are trained on the
same dataset and then test on the same data.

Table 1: Quantitative comparisons with the state-of-the-art
methods on Rain1200 [12].

Methods Rain1200
PSNR SSIM

DerainNet [2] 23.38 0.835
DDN [3] 27.33 0.898
JORDER [11] 24.32 0.862
DID-MDN [12] 27.95 0.908
DualCNN [7] 23.38 0.787
RESCAN [5] 29.95 0.884
SPANet [10] 28.64 0.910
PreNet [9] 31.36 0.911
MSPFN [4] 32.39 0.916

CCN 32.97 0.921

Table 2: Ablation studies of our network on RainDS-Syn.

RainDS-Syn RS RD RDS
PSNR/SSIM PSNR/SSIM PSNR/SSIM

CCN w/o ISV 27.72/0.87 21.05/0.77 20.46/0.61

CCN w SHARE 29.79/0.89 23.25/0.80 22.71/0.73

CCN 35.12/0.97 33.29/0.97 32.16/0.95

As shown in Figure 6, we also demonstrate the visual
results of our baseline models in Table 5 of the main paper.
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Figure 1: Visual comparisons with the state-of-the-art methods DRD-Net [1] and PReNet [9] on Rain200H [11]. (Best view
on screen)
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Figure 2: Visual comparisons with the state-of-the-art methods DRD-Net [1] and PReNet [9] on Rain200L [11]. (Best view
on screen)
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Figure 3: Visual comparisons with the state-of-the-art methods DerainNet [2], PReNet [9], RESCAN [5] and MSPFN [4] on
Rain1200 [12].(Best view on screen)
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Figure 4: Visual quality comparisons with the state-of-the-art methods JORDER [11], DDN [3], and PReNet [9] on real rainy
images [6].
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Figure 5: Visual comparisons with the state-of-the-art method AttentGAN [8] on the RainDrop dataset.
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Figure 6: Visual comparisons of our baseline models on our proposed dataset RainDS-Syn.
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