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Figure 1. We present a method for learning complete 3D morphable models of faces from videos and images. We show visualizations
of the learned models on the right. Faces in each direction of indicated arrows is obtained by linearly scaling individual component of
respective models. Identity geometry captures variations in the face shape (second column), lips (top left to bottom right) and jaw (top
right to bottom left), while expressions capture variations due to mouth opening (second row), smile (second column) and eye movement
(top right to bottom left). Albedo/Reflectance spans a variety of skin color (second column), eye color (top right to bottom left) and gender
specific features such as facial hair and make-up (second row).

In this supplemental document, we provide more train-
ing details, as well as more qualitative results, comparisons
and ablative studies.

1. Vertex correspondences for landmark and
segmentation consistency losses

We provide more details about computing the sliding
contours on the mesh, used in the landmark and segmen-
tation consistency loss terms. Unlike interior facial land-
marks, we cannot annotate mesh vertices for the rolling con-
tours (face contour and the inner contours of the lips). We
compute these correspondences using our renderer. We first
annotate several masks on the template mesh, see Fig 2. We
use the boundaries between the projections of different re-
gions to compute the rolling contour vertices. For eg.,the
red and blue masks are used to compute the inner contour
of the upper lip. Inner contour of the lower lip can be com-
puted similarly. Face contour is computed as the boundary
between the yellow mask and the background.

Figure 2. Masks used to compute the rolling contours.

2. Experimental details

Our network architecture is similar to that of FML [7]. A
few convolutional layers extract features for each frame in
the multi-frame image. These features are average pooled,
and further processed using convolutional and fully con-
nected layers to obtain the identity parameters. This ensures
that the identity component of the reconstruction is consis-
tent for the multi-frame input. Frame dependent parameters
such as expression, illumination and rigid head pose are pre-
dicted independently for each frame using further siamese
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Layers Activation Shape Siamese Output
Image (240,240,3) Conv2D (kernel 11x11, stride 4) + ReLU (60, 60, 96) Yes unnamed
↑ MaxPool (kernel 3x3, stride 2) (29, 29, 96) n/a unnamed
↑ Conv2D (kernel 5x5, stride 1) + ReLU (29, 29, 256) Yes unnamed
↑ MaxPool (kernel 3x3, stride 2) (14, 14, 96) n/a unnamed
↑ Conv2D (kernel 3x3, stride 1) + ReLU (14, 14, 384) Yes lowFeatures
↑ Conv2D (kernel 3x3, stride 2) + ReLU (7, 7, 256) Yes unnamed
↑ Conv2D (kernel 3x3, stride 2) + ReLU (4, 4, 256) Yes mediumFeatures

Table 1. Feature extractor details.

Layers Activation Shape Siamese Output
mediumFeatures Concat (M, 4, 4, 256) n/a unnamed
↑ MeanPool (4, 4, 256) n/a unnamed
↑ Conv2D (kernel 3x3, stride 1) + ReLU (4, 4, 384) No unnamed
↑ Conv2D (kernel 3x3, stride 1) + ReLU (4, 4, 256) No unnamed
↑ Fully Connected + ReLU (1000, 1) No unnamed
↑ Fully Connected + ReLU (1000, 1) No unnamed
↑ Fully Connected (80+80, 1) No shapeParam + reflectanceParam

Table 2. Shared identity details.

Figure 3. Mean mesh with albedo.

convolutions and fully connected layers on the per-frame
features. Our expression model is represented using the de-
formation graph, while FML [7] uses a pre-trained model at
the mesh resolution. For more details on the architecture of
our network, please refer to Tables. 1, 2 and 3. Fig 3 shows
the fixed mean mesh with albedo used by our method.

Empirically, we found the following weights help in sta-
ble training of our method:
λpho = 2.5, λland = 50, λsmo = 10, λseg = 0.001, λper =
1, λdis = 1.

3. Results

In the following, we show more comparisons to state-of-
the-art methods, and ablative studies on various loss terms.

3.1. Video results

In the project page1, we provide visualization of our
learned model. It can be observed that the learned model
has good disentanglement of identity and expression com-

ponents. In addition, we show expression transfer of videos
to static faces. This also confirms the disentanglement qual-
ity of our model. Learning a personalized model helps in
obtaining high quality reconstructions. Please watch the
video in project page1 to see comparitive results with FML.
As FML uses a pre-trained expression model, it fails to cap-
ture various identity specific mouth movements, which are
outside the expression model space. We show expression
transfer results with personalized model to show that the
semantics of the expressions are intact, even with personal-
ized model.

3.2. Comparisons to state-of-the-art methods

Fig 4 shows personalized model reconstruction compar-
ison with FML [7]. Note that the training strategy of FML
does not allow for learning of the expression model. Thus,
we obtain higher quality reconstructions. Please watch
video.mp4 for video comparisons. Fig 6 shows several
comparisons of our method with FML [7] and Tewari et
al. [8]. Tewari et al. [8] learn a corrective space on top
of the existing face models. The corrective space contains
both identity and expression components, without disentan-
glement. FML [7] uses a pretrained expression model and
hence can not generalize to various expressions. Figs 7 and
8 show more comparisons of our method with MoFA [9],
GANFIT [1] and RingNet [5]. All these methods use pre-
trained geometry models. Fig 9 shows more comparisons of
our method with Tran et al. [10], [11]. Richardson et al. [4]
and Sela et al. [6] are trained on synthetic data and do not
generalize well to real data (Fig. 10). These approaches
cannot disentangle the identity and expression components.

1project page: http://gvv.mpi-inf.mpg.de/projects/
LeMoMo/
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Layers Activation Shape Siamese Output
shapeParam, reflectanceParam Fully Connected + ReLU + Reshape (14, 14, 1) No unnamed
↑ Conv2D (kernel 3x3, stride 1) + ReLU (14, 14, 384) No unnamed
↑, lowFeatures Concat (14, 14, 768) n/a unnamed
↑ Conv2D (kernel 3x3, stride 1) + ReLU (14, 14, 384) Yes unnamed
↑ Conv2D (kernel 3x3, stride 1) + ReLU (14, 14, 384) Yes unnamed
↑ Conv2D (kernel 3x3, stride 1) + ReLU (14, 14, 256) Yes unnamed
↑ MaxPool(kernel 3x3, stride 2) (6, 6, 256) Yes unnamed
↑ Fully Connected + ReLU (2048, 1) Yes unnamed
↑ Fully Connected (6+64+27+1, 1) Yes pose + expressionParam +

illuminationParam
Table 3. Parameter estimation details.

We are the only approach among all these approaches which
learns the complete 3D morphable model without using any
3D supervision.

3.3. Ablative studies

Perceptual and segmentation loss Fig 5 shows recon-
structions for several images with and without the percep-
tual loss. It is clearly evident that the perceptual loss helps
in capturing detailed albedo and more realistic overlays. Fig
11 shows reconstructions for several images with and with-
out the segmentation consistency loss. This loss helps in
better capturing mouth shape and inner lip contours.

Orthogonality Orthogonality between the identity and
expression models is ensured by design, as in FML. The
network updates the identity model in each training itera-
tion by projecting it onto the orthogonal complement of the
expression model. Although theoretically, it should help in
better disentanglement between the identity and expression
components, empirically we found that it does not lead to
any significant difference. We report the disentanglement
(average of expression deformation for images with neutral
faces) and reconstruction errors proposed in the main paper
in Tab. 5 and Tab. 4. While the disentanglement loss be-
comes slightly higher, reconstruction error decreases with
orthogonality.

Disentanglement In this section, we show the impact of
identity pre-training explained the main paper. As shown in
Tab. 5, pre-training improves reconstructions in terms of the
disentanglement metric.

3.4. Fitting to 3D scans

We also evaluate our learned models by fitting them to
3D scans of the BU-3DFE dataset [12]. Here we use PCA
model with 100 basis vectors each for both identity and ex-
pression, learnt from 10000 images from VoxCeleb dataset.
We use the dense correspondences precomputed for quan-
titative evaluations, and minimize the per-vertex distance
between the reconstructed and ground-truth meshes. The
translation and scale of the reconstructed mesh is com-
puted at the first iteration and fixed during optimization.
ADAM [2] optimizer with a step size of 0.05 is used to min-

Figure 4. Our personalized model captures higher quality mouth
geometry compared to FML, where only the identity models can
be personalized. We show the inner contours of the meshes (ours-
top, FML-bottom) in column 4. The ground truth inner contours
and zoomed in image are visualized in column 5.

imize the per-vertex distances, as well as the global rotation
of the reconstructed mesh. Table 6 reports the errors aver-
aged across 166 meshes of BU-3DFE dataset. Our method
obtains low fitting errors. FML [7] obtains slightly lower
errors in this evaluation, which does not look at the quality
of image reconstructions.

In Table 7, we evaluate the compactness of the learned
models by reporting errors achieved by smaller-sized mod-
els. Our model achieves good quality even with 5 basis vec-
tors.

3.5. Improvement over segmentation networks

Fig 12 shows lip regions as projected from the recon-
structed mesh, compared to the lip segments predicted by
the network [3]. Our method is robust to images which are
of low quality and with faces in extreme poses.
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w/ O w/o O MoFA FML Fine [8] Coarse [8]
Mean 1.75 1.78 3.22 1.78 1.83 1.81
SD 0.44 0.43 0.77 0.45 0.39 0.47

Table 4. Geometric reconstruction error (in mm) on the BU-3DFE dataset [12]. Our technique outperforms MoFA [9], coarse and fine
models of Tewari et al. [8] and FML et al. [7].

w/o Ldis w/o PT w/o O Ours FML MoFA
AE: Mean 2.5075 0.0147 0.0105 0.0116 2.0329 0.4056
AE: SD 0.8290 0.0464 0.0506 0.0385 0.6840 0.2

Table 5. Our identity disentanglement term results in lesser leakage of identity geometry into expression component in neutral faces. We
observe slightly worse disentanglement without identity pre training (PT). Our method performs better than FML [7] and MoFA [9]

Figure 5. Albedo and overlay is noticeably improved with the
perceptual loss

FML Ours
3D error 0.76(σ=0.11) 1.07(σ=0.17)

Table 6. Geometric reconstruction error (in mm) on the BU-3DFE
dataset [12], when the learned models are fit to 3D scans. The
PCA models are used for fitting here.

4. Limitations
Although our method is robust to various aspects of in-

the-wild images, it is still limited in certain cases. Fig 13
shows various limitations of our method. Our method fails
to capture mid- and high-frequency details in the geome-
try component, such as wrinkles and beard. This is com-
mon with other model-based reconstruction approaches. It
also fails to capture specularities and extreme lighting con-
ditions as our model assumes a lambertian surface and dis-
tant illumination. In cases of occlusions, such as glasses,
our method incorrectly compensates by reconstructing these
details in the albedo component.
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Figure 9. Both approaches of Tran et al. [11, 10] do not disentan-
gle identity geometry from expressions. Our technique, however,
estimates and disentagles all facial components. It also produces
produces more accurate mouth shapes.

Figure 10. Richardson et al. [8] and Sela et al. [8] produce inac-
curate geometry and do not estimate albedo nor illumination. Our
approach estimates all facial components, including high quality
geometry and overlay.
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Figure 11. Observe that having segmentation consistency helps in
better capturing mouth shape and expression.

Figure 12. Our approach produces plausible upper (gray) and
lower (white) lip segmentations even when the images are of bad
quality, contain extreme poses or occlusions. In such cases [3]
struggles to produce acceptable segmentation (see column 4).
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Figure 13. Limitations of our method. We cannot reconstruct
high-frequency geometry details. In addition, we do not model
specularities or occlusions.
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