
Single Image Depth Prediction with Wavelet Decomposition

Supplementary Material

Michaël Ramamonjisoa1,∗ Michael Firman2 Jamie Watson2

Vincent Lepetit1 Daniyar Turmukhambetov2

1LIGM, IMAGINE, Ecole des Ponts, Univ Gustave Eiffel, CNRS 2Niantic

www.github.com/nianticlabs/wavelet-monodepth

1. Network Architectures and Losses

1.1. On direct supervision of wavelet coefficients

The previous work WaveletStereo [22] supervises its

wavelet based stereo matching method with ground truth

wavelet coefficients at the different levels of the decom-

position. However, wavelets can only reliably be super-

vised when ground truth depth -or disparity- is provided and

when it does not contain missing values or high-frequency

noise, as they show on the synthetic SceneFlow [14] dataset.

The sparsity of ground truth data in the KITTI dataset es-

pecially around edges makes it impossible to estimate re-

liably ground truth wavelet coefficients. On NYUv2, the

noise in depth maps is also an issue for direct supervision of

wavelets, e.g. with creases in the layout or inaccurate depth

edges. This noise also prohibits the use of Semi Global

Matching ground truth for wavelet coefficient supervision.

As we show in our work, supervising the network on

wavelet reconstructions allows us to ignore missing values

and be robust to noisy labels.

1.2. Experiments on KITTI

Architecture The architecture we use for our experiments

is a modification of the architecture used in [7], as described

in the main paper. In Table 1, we set out our decoder archi-

tecture in detail.

Self-supervised losses Our self-supervised losses are as

described in [7], which we repeat here for completeness.

Given a stereo pair of images (IL, IR), we train our net-

work to predict a depth map DL, pixel-aligned with the left

image. We also assume access to the camera intrinsics K,

and the relative camera transformation between the images

in the stereo pair TR→L. We use the network’s current esti-

mate of depth to synthesise an image IR→L, computed as

IR→L = IR

〈

proj(DL, TR→L,K)
〉

, (1)

∗Work done during an internship at Niantic

where proj() are the 2D pixel coordinates obtained by pro-

jecting the depths DL into image IR, and
〈〉

is the sampling

operator. We follow standard practice in training the model

under a photometric reconstruction error pe, so our loss be-

comes

Lp = pe(IL, IR→L). (2)

Following [7, 3] etc. we use a weighted sum of SSIM and

L1 losses

pe(Ia, Ib) = α
1− SSIM(Ia, Ib)

2
+ (1− α)‖Ia − Ib‖1,

where α = 0.85. We additionally follow [7] in using the

smoothness loss:

Ls = |∂xd
∗
L| e

−|∂xIL| + |∂yd
∗
L| e

−|∂yIL|, (3)

where d∗L = dL/dL is the mean-normalized inverse depth

for image IL.

When we train on monocular and stereo se-

quences (‘MS’), we again follow [7] — see our main

paper for an overview, and [7] for full details.

Depth Hints loss When we train with depth hints, we use

the proxy loss from [20], which we recap here. For stereo

training pairs, we compute a proxy depth map D̃L using

semi-global matching [10], an off-the-shelf stereo matching

algorithm. We use this to create a second synthesized image

ĨR→L = IR

〈

proj(D̃L, TR→L,K)
〉

, (4)

We decide whether or not to apply a supervised loss us-

ing D̃L as ground truth on a per-pixel basis. We only add

this supervised loss for pixels where pe(IL, ĨR→L) is lower

pe(IL, IR→L). The supervised loss term we use is logL1,

following [20]. For experiments where Depth Hints are

used for training, we disable the smoothness loss term.

www.github.com/nianticlabs/wavelet-monodepth

Depth Decoder

layer k s chns res input activation

upconv5 3 1 256 32 econv5 ELU [4]

Level 3 coefficients predictions

iconv4 3 1 256 16 ↑upconv5, econv4 ELU

disp4 3 1 1 16 iconv4 Sigmoid

wave4 3 1 3 16 iconv4 Sigmoid

upconv4 3 1 128 16 iconv4 ELU

IDWT3 - - 1 8 disp4, wave4 -

Level 2 coefficients predictions

iconv3 3 1 128 8 ↑upconv4, econv3 ELU

wave3 3 1 3 8 iconv3 Sigmoid

upconv3 3 1 64 8 iconv3 ELU

IDWT2 - - 1 8 IDWT3, wave3 -

Level 1 coefficients predictions

iconv2 3 1 64 4 ↑upconv3, econv2 ELU

wave2 3 1 3 4 iconv2 Sigmoid

upconv2 3 1 32 4 iconv2 ELU

IDWT1 - - 1 8 IDWT2, wave2 -

Level 0 coefficients predictions

iconv1 3 1 32 2 ↑upconv2, econv1 ELU

wave1 3 1 3 2 iconv1 Sigmoid

IDWT0 - - - 1 IDWT1, wave1 -

Table 1: Our decoder network architecture for experiments

on the KITTI [5] dataset using ResNet backbone Here k is the

kernel size, s the stride, chns the number of output channels for

each layer, res is the downscaling factor for each layer relative to

the input image, and input corresponds to the input of each layer

where ↑ is a 2× nearest-neighbor upsampling of the layer. disp4

is used produce the low-resolution estimate LL3, while waveJ is

used to decode {LHJ,HLJ,HHJ} at level J. disp4 and waveJ are

convolution blocks detailed in Table 2.

disp4 Layer

layer k s chns res input activation

disp4(1) 1 1 chns(iconv5) / 4 16 iconv5 LeakyReLU(0.1) [21]

disp4(2) 3 1 1 16 disp4-1 Sigmoid

Wavelet Decoding Layer - waveJ

layer k s chns res input activation

waveJ(1+) 1 1 chns(iconv[J+1]) 2J iconv[J+1] LeakyReLU(0.1)

waveJ(2+) 3 1 3 2J waveJ(1+) Sigmoid

waveJ(1-) 1 1 chns(iconv[J+1]) 2J iconv[J+1] LeakyReLU(0.1)

waveJ(2-) 3 1 3 2J waveJ(1-) Sigmoid

substract 1 1 3 2J
waveJ(2+),

Linear
waveJ(2-)

Table 2: Architecture of our wavelet decoding layer used for

KITTI experiments J denotes the level of the decoder. disp4 is

used produce the low-resolution estimate LL3, while waveJ is used

to decode {LHJ,HLJ,HHJ}.

Additional experiments We additionally tried training

using edge-aware sparsity constraints that penalize non-

zero coefficients at non-edge regions, by replacing depth

gradients with wavelets coefficients in Monodepth’s [6] dis-

Depth Decoder

layer k s chns res input activation

upconv5 3 1 1104 32 econv5 Linear

iconv4 3 1 552 16 ↑upconv5, econv4 LeakyReLU(0.2)

iconv3 3 1 276 8 ↑iconv4, econv3 LeakyReLU(0.2)

iconv2 3 1 138 4 ↑iconv3, econv2 LeakyReLU(0.2)

iconv1 3 1 69 2 ↑iconv2, econv1 LeakyReLU(0.2)

outconv0 1 1 1 2 iconv1 Linear

Table 3: Architecture of our DenseNet baseline decoder

for experiments on the NYUv2 [18] dataset Note that as in

DenseDepth [2] we produce a depth map at half-resolution. Ta-

ble adapted from [7].

parity smoothness loss, which unfortunately made training

unstable. We also tried to supervise wavelet coefficients us-

ing distillation [9, 1] from a teacher depth network, which

resulted in lower performances.

1.3. Experiments on NYUv2

Architecture We adapted our architecture from the Py-

Torch implementation of DenseDepth [2]. Our implementa-

tion uses a DenseNet161 encoder instead of a DenseNet169,

and a standard decoder with up-convolutions. We first de-

sign a baseline that does not use wavelets, using the archi-

tecture detailed in Table 3. Our wavelet adaptation of that

baseline is then detailed in Table 4. For experiments re-

ported in the main paper, we follow the DenseDepth strat-

egy and predict outputs at half the input resolution. Hence,

the last level of the depth decoder in Table 4 is discarded.

For experiments using a light-weight decoder discussed

later in Section 4.4, which predicts 224 × 224 depth maps

given a 224 × 224 input image, we keep all four levels of

wavelet decomposition.

Supervised losses For our NYU results in the main paper,

we supervise depth using an L1 loss and SSIM:

LD(y, y∗) = λ1ℓ1(y, y
∗), (5)

where y and y∗ are respectively predicted and ground truth

depth and λ1 = 0.1. Similar to [16, 15], we clamp depth

between 0.4 and 10 meters.

2. Scores on Improved KITTI Ground Truth

We report results on the improved KITTI ground

truth [19] in Table 5. As we saw in the main paper, our

method is competitive on scores with non-wavelets base-

lines, but as we have shown our wavelet decomposition en-

ables more efficient predictions.

3. Qualitative Results

In this section, we show qualitative results of our

method.

Depth Decoder

layer k s chns res input activation

upconv5 3 1 1104 32 econv5 Linear

Level 3 coefficients predictions

iconv4 3 1 552 16 ↑upconv5, econv4 LeakyReLU(0.2)

disp4 1 1 1 16 upconv5 Linear

wave4 3 1 3 16 upconv5 Linear

IDWT3 - - 1 8 disp4, wave4 -

Level 2 coefficients predictions

iconv3 3 1 276 8 ↑iconv4, econv3 LeakyReLU(0.2)

wave3 3 1 3 8 iconv3 Linear

IDWT2 - - 1 4 IDWT3, wave3 -

Level 1 coefficients predictions

iconv2 3 1 138 4 ↑iconv2, econv2 LeakyReLU(0.2)

wave2 3 1 3 4 iconv2 Linear

IDWT1 - - 1 2 IDWT2, wave2 -

Table 4: Our decoder network architecture for experiments

on the NYUv2 [18] dataset Note that since like in DenseDepth [2]

we produce a depth map at half-resolution, we only need to predict

wavelet coefficients until quarter-resolution. Table adapted from

[7].

C

H

W

(a)

C

H

W

(b)

Figure 1: Channel pruning (a) vs our sparse computation (b). Our

sparse computation enabled by wavelets is complimentary with the

channel pruning strategy to reduce the amount of computation, as

both computation reduction methods operate in orthogonal dimen-

sions.

In Figures 2-3-4 and Figures 5-6-7 we first show

our sparse prediction process with corresponding sparse

wavelets and masks, on the NYUv2 and KITTI datasets re-

spectively. While we only need to compute wavelet coef-

ficients in less than 10% of pixel locations in the decoding

process, we show that our wavelets efficiently retain rele-

vant information. Furthermore, we show that wavelets effi-

ciently detect depth edges and their orientation. Therefore,

future work could make efficient use of our wavelet based

depth estimation method for occlusion boundary detection.

In Figure 8, we show comparative results between our

baseline Depth Hints [20] and our wavelet based method.

4. Exploring Other Efficiency Tracks

Our paper mainly explores computation reduction in the

decoder of a UNet-like architecture. However, this direction

is orthogonal and complementary with all other complexity

reduction lines of research.

Our approach is for example complementary with the

FastDepth approach, which consists in reducing the overall

complexity of a depth estimation network by compressing it

in many dimensions such as (1) the encoder, (2) the decoder

(3) the input resolution. They argue that the deep network

introduced by Laina et al. [13] suffers from high complex-

ity, while it could largely be reduced. Here we present a

set of experiments we conducted to explore these different

aspects of complexity reduction.

4.1. Experiment with a lightweight MobileNetv2
encoder

First, we replace the costly ResNet [8] or DenseNet [12,

11] backbone encoders with the efficient MobileNetv2 [17].

Indeed, in contrast with FastDepth, in the main paper, we

report results using large encoder models (Resnet18/50 or

Densenet161). Although this helps achieving better scores,

we show in Table 6 and Table 7 that we can reach close

to state-of-the-art results even with a small encoder such as

MobileNetv2.

4.2. Separable convolutions

Secondly, FastDepth also shows that separable convo-

lutions in their ”NNConv” decoder provides the best score-

efficiency trade-off. Since this approach is orthogonal to our

sparsification method, it therefore complements our method

and can be used to improve efficiency. Interestingly, we

show in Table 7 that replacing sparse convolutions with

sparse-depthwise separable convolutions works on par with

standard convolutions. This can be explained by the fact

that IDWT is also a separable operation, and therefore effi-

ciently combines with depthwise separable convolutions.

4.3. Channel pruning

A popular approach to complexity and memory footprint

reduction is channel pruning, which aims at removing some

of the unnecessary channel in convolutional layers. Note

that our wavelet enabled sparse convolutions are comple-

mentary with channel pruning, as can be seen in Figure 1.

While channel pruning can, in practice, greatly reduce both

complexity and memory footprint, it requires heavy hyper-

parameter search that we therefore choose to leave for fu-

ture work.

4.4. Input resolution

Finally, one important factor that makes FastDepth ef-

ficient is that it is trained with 224 × 224 inputs, against

our 640 × 480 input. While our method is best designed

for higher-resolution regime where sparsity of wavelets is

stronger, we still show that our method achieves decent re-

sults even at low-resolution, and report our scores in Ta-

ble 8.

Cit. Method PP Data H × W Abs Rel Sq Rel RMSE RMSE log δ<1.25 δ<1.25
2

δ<1.25
3

[7] Monodepth2 Resnet18 ✓ S 192 × 640 0.079 0.512 3.721 0.131 0.924 0.982 0.994

WaveletMonodepth Resnet18 ✓ S 192 × 640 0.084 0.523 3.807 0.137 0.914 0.980 0.994

WaveletMonodepth Resnet50 ✓ S 192 × 640 0.081 0.477 3.658 0.133 0.920 0.981 0.994

[20] Depth Hints ✓ SSGM 192 × 640 0.085 0.487 3.670 0.131 0.917 0.983 0.996

WaveletMonodepth Resnet18 ✓ SSGM 192 × 640 0.083 0.476 3.635 0.129 0.920 0.983 0.995

Depth Hints Resnet50 ✓ SSGM 192 × 640 0.081 0.432 3.510 0.124 0.924 0.985 0.996

WaveletMonodepth Resnet50 ✓ SSGM 192 × 640 0.081 0.449 3.509 0.125 0.923 0.986 0.996

[7] Monodepth2 Resnet18 ✓ MS 192 × 640 0.084 0.494 3.739 0.132 0.918 0.983 0.995

WaveletMonodepth Resnet18 ✓ MS 192 × 640 0.085 0.497 3.804 0.134 0.912 0.982 0.995

[20] Depth Hints ✓ MS + SSGM 192 × 640 0.087 0.526 3.776 0.133 0.915 0.982 0.995

WaveletMonodepth Resnet18 ✓ MS + SSGM 192 × 640 0.086 0.497 3.699 0.131 0.914 0.983 0.996

[7] Monodepth2 Resnet18 ✓ S 320 × 1024 0.082 0.497 3.637 0.132 0.924 0.982 0.994

WaveletMonodepth Resnet18 ✓ S 320 × 1024 0.080 0.443 3.544 0.130 0.919 0.983 0.995

WaveletMonodepth Resnet50 ✓ S 320 × 1024 0.076 0.413 3.434 0.126 0.926 0.984 0.995

[20] Depth Hints ✓ SSGM 320 × 1024 0.077 0.404 3.345 0.119 0.930 0.988 0.997

WaveletMonodepth Resnet18 ✓ SSGM 320 × 1024 0.078 0.397 3.316 0.121 0.928 0.987 0.997

Depth Hints Resnet50 ✓ SSGM 320 × 1024 0.074 0.363 3.198 0.114 0.936 0.989 0.997

WaveletMonodepth Resnet50 ✓ SSGM 320 × 1024 0.074 0.357 3.170 0.114 0.936 0.989 0.997

Table 5: Quantitative results on the improved KITTI benchmark. We compare our method to our baselines on the KITTI [5] improved

dataset introduced by [19], using the Eigen split. Data column (data source used for training): S is for self-supervised training on stereo

images, MS is for models trained with both M (forward and backward frames) and S data and SSGM refers to the extra stereo ground truth

which was used in [20].

Cit. Method PP Data H × W Abs Rel Sq Rel RMSE RMSE log δ<1.25 δ<1.25
2

δ<1.25
3

[20] Depth Hints ✓ SSGM 192 × 640 0.106 0.780 4.695 0.193 0.875 0.958 0.980

WaveletMonodepth MobileNetv2 ✓ SSGM 192 × 640 0.109 0.851 4.754 0.194 0.870 0.957 0.980

WaveletMonodepth Resnet18 ✓ SSGM 192 × 640 0.107 0.829 4.693 0.193 0.873 0.957 0.980

WaveletMonodepth Resnet50 ✓ SSGM 192 × 640 0.105 0.813 4.625 0.191 0.879 0.959 0.981

[20] Depth Hints ✓ SSGM 320 × 1024 0.099 0.723 4.445 0.187 0.886 0.961 0.982

WaveletMonodepth MobileNetv2 ✓ SSGM 320 × 1024 0.104 0.772 4.545 0.188 0.880 0.960 0.982

WaveletMonodepth Resnet18 ✓ SSGM 320 × 1024 0.102 0.739 4.452 0.188 0.883 0.960 0.981

Depth Hints Resnet50 ✓ SSGM 320 × 1024 0.096 0.710 4.393 0.185 0.890 0.962 0.981

WaveletMonodepth Resnet50 ✓ SSGM 320 × 1024 0.097 0.718 4.387 0.184 0.891 0.962 0.982

Table 6: Quantitative results on the KITTI dataset using MobileNetv2 encoder. We evaluate results of our method using a lighter

encoder on KITTI [5], using the Eigen split. Data column (data source used for training): S is for self-supervised training on stereo images,

MS is for models trained with both M (forward and backward frames) and S data and SSGM refers to the extra stereo ground truth which

was used in [20].

Method Encoder Depthwise H × W Abs Rel RMSE log10 δ1 δ2 δ3 ǫacc ǫcomp

Dense baseline DenseNet161 - 480 × 640 0.1277 0.5479 0.0539 0.8430 0.9681 0.9917 1.7170 7.0638

Ours DenseNet161 - 480 × 640 0.1258 0.5515 0.0542 0.8451 0.9681 0.9917 1.8070 7.1073

Ours DenseNet161 ✓ 480 × 640 0.1275 0.5771 0.0557 0.8364 0.9635 0.9897 2.0133 7.1903

Dense baseline MobileNetv2 - 480 × 640 0.1772 0.6638 0.0731 0.7419 0.9341 0.9835 1.8911 7.7960

Ours MobileNetv2 - 480 × 640 0.1727 0.6776 0.0732 0.7380 0.9362 0.9844 1.9732 7.9004

Ours MobileNetv2 ✓ 480 × 640 0.1734 0.6700 0.0731 0.7391 0.9347 0.9844 2.3036 8.0538

Table 7: Quantitative results on NYUv2 [18] using depth-wise convolutions and light-weight encoder We show that our method is

compatible with other efficiency seeking approaches such as depth-wise separable convolutions and lower complexity encoders.

Method Encoder Depthwise H × W Abs Rel RMSE log10 δ1 δ2 δ3
Dense baseline DenseNet161 - 224 × 224 0.1278 0.5715 0.0557 0.8368 0.9620 0.9901

Ours DenseNet161 - 224 × 224 0.1279 0.5651 0.0549 0.8399 0.9652 0.9899

Ours DenseNet161 ✓ 224 × 224 0.1304 0.5775 0.0564 0.8329 0.9613 0.9892

Dense baseline MobileNetv2 - 224 × 224 0.1505 0.6221 0.0632 0.7984 0.9526 0.9878

Ours MobileNetv2 - 224 × 224 0.1530 0.6409 0.0655 0.7844 0.9500 0.9864

Ours MobileNetv2 ✓ 224 × 224 0.1491 0.6463 0.0646 0.7880 0.9506 0.9871

Table 8: Quantitative results on NYUv2 [18] using depth-wise convolutions and light-weight encoder We show that our method is

compatible with other efficiency seeking approaches such as depth-wise separable convolutions and lower complexity encoders.

References

[1] Filippo Aleotti, Giulio Zaccaroni, Luca Bartolomei, Matteo

Poggi, Fabio Tosi, and Stefano Mattoccia. Real-time single

image depth perception in the wild with handheld devices.

Sensors, 2021.

[2] Ibraheem Alhashim and Peter Wonka. High Qual-

ity Monocular Depth Estimation via Transfer Learning.

arXiv:1812.11941, 2018.

[3] Yuhua Chen, Cordelia Schmid, and Cristian Sminchis-

escu. Self-supervised learning with geometric constraints in

monocular video: Connecting flow, depth, and camera. In

ICCV, 2019.

[4] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-

iter. Fast and accurate deep network learning by exponential

linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

[5] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In CVPR, 2012.

[6] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised

Monocular Depth Estimation with Left-Right Consistency.

In CVPR, 2017.

[7] Clément Godard, Oisin Mac Aodha, Michael Firman, and

Gabriel J. Brostow. Digging into self-supervised monocular

depth estimation. In ICCV, 2019.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning

for Image Recognition. In CVPR, 2016.

[9] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the

knowledge in a neural network. arXiv:1503.02531, 2015.

[10] Heiko Hirschmuller. Accurate and efficient stereo processing

by semi-global matching and mutual information. In CVPR,

2005.

[11] Gao Huang, Zhuang Liu, Geoff Pleiss, Laurens Van

Der Maaten, and Kilian Weinberger. Convolutional networks

with dense connectivity. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 2019.

[12] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2017.

[13] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N.

Navab. Deeper Depth Prediction with Fully Convolutional

Residual Networks. In 3DV, 2016.

[14] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,

Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A

large dataset to train convolutional networks for disparity,

optical flow, and scene flow estimation. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 4040–4048, 2016.

[15] Michael Ramamonjisoa, Yuming Du, and Vincent Lep-

etit. Predicting sharp and accurate occlusion boundaries in

monocular depth estimation using displacement fields. In

CVPR, 2020.

[16] Michael Ramamonjisoa and Vincent Lepetit. SharpNet: Fast

and Accurate Recovery of Occluding Contours in Monocular

Depth Estimation. In ICCV Workshop, 2019.

[17] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. MobileNetV2: Inverted

residuals and linear bottlenecks. In CVPR, 2018.

[18] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob

Fergus. Indoor Segmentation and Support Inference from

RGBD Images. In ECCV, 2012.

[19] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,

Thomas Brox, and Andreas Geiger. Sparsity invariant CNNs.

In 3DV, 2017.

[20] Jamie Watson, Michael Firman, Gabriel J. Brostow, and

Daniyar Turmukhambetov. Self-supervised monocular depth

hints. In ICCV, 2019.

[21] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical

evaluation of rectified activations in convolutional network.

arXiv preprint arXiv:1505.00853, 2015.

[22] Menglong Yang, Fangrui Wu, and Wei Li. Waveletstereo:

Learning wavelet coefficients of disparity map in stereo

matching. In CVPR, June 2020.

RGB / Mask[J] DepthJ LHJ HLJ HHJ Error[J]

Figure 2: Qualitative results of predicted wavelets coefficients of depth maps on the NYU dataset (1/3). Our predicted wavelets have

two desirable properties: they are sparse, allowing for efficient computation, and they are accurately located around depth edges without

needing to supervise them. Results are obtained with η = 0.04. For each block of results, each row shows coefficients and depth maps

obtained at scale J in the decoder from lowest to highest scale (decreasing J), as well as the (signed-)error between DepthJ and the Depth

map obtained with dense wavelet coefficients at all scales. Error is displayed within range [−1.5m, 1.5m].

RGB / Mask[J] DepthJ LHJ HLJ HHJ Error[J]

Figure 3: Qualitative results of predicted wavelets coefficients of depth maps on the NYU dataset (2/3). Our predicted wavelets have

two desirable properties: they are sparse, allowing for efficient computation, and they are accurately located around depth edges without

needing to supervise them. Results are obtained with η = 0.04. For each block of results, each row shows coefficients and depth maps

obtained at scale J in the decoder from lowest to highest scale (decreasing J), as well as the (signed-)error between DepthJ and the Depth

map obtained with dense wavelet coefficients at all scales. Error is displayed within range [−1.5m, 1.5m].

RGB / Mask[J] DepthJ LHJ HLJ HHJ Error[J]

Figure 4: Qualitative results of predicted wavelets coefficients of depth maps on the NYU dataset (3/3). Our predicted wavelets have

two desirable properties: they are sparse, allowing for efficient computation, and they are accurately located around depth edges without

needing to supervise them. Results are obtained with η = 0.04. For each block of results, each row shows coefficients and depth maps

obtained at scale J in the decoder from lowest to highest scale (decreasing J), as well as the (signed-)error between DepthJ and the Depth

map obtained with dense wavelet coefficients at all scales. Error is displayed within range [−1.5m, 1.5m].

RGB / Mask[J] DepthJ LHJ HLJ HHJ Error[J]

Figure 5: Qualitative results of predicted wavelets coefficients of depth maps on the KITTI dataset (1/3). Our predicted wavelets have

two desirable properties: they are sparse, allowing for efficient computation, and they are accurately located around depth edges without

needing to supervise them. Results are obtained with η = 0.05. For each block of results, each row shows coefficients and depth maps

obtained at scale J in the decoder from lowest to highest scale (decreasing J), as well as the (signed-)error between DepthJ and the Depth

map obtained with dense wavelet coefficients at all scales. Error is displayed within range [−5m, 5m].

RGB / Mask[J] DepthJ LHJ HLJ HHJ Error[J]

Figure 6: Qualitative results of predicted wavelets coefficients of depth maps on the KITTI dataset (2/3). Our predicted wavelets have

two desirable properties: they are sparse, allowing for efficient computation, and they are accurately located around depth edges without

needing to supervise them. Results are obtained with η = 0.05. For each block of results, each row shows coefficients and depth maps

obtained at scale J in the decoder from lowest to highest scale (decreasing J), as well as the (signed-)error between DepthJ and the Depth

map obtained with dense wavelet coefficients at all scales. Error is displayed within range [−5m, 5m].

RGB / Mask[J] DepthJ LHJ HLJ HHJ Error[J]

Figure 7: Qualitative results of predicted wavelets coefficients of depth maps on the KITTI dataset (3/3). Our predicted wavelets have

two desirable properties: they are sparse, allowing for efficient computation, and they are accurately located around depth edges without

needing to supervise them. Results are obtained with η = 0.05. For each block of results, each row shows coefficients and depth maps

obtained at scale J in the decoder from lowest to highest scale (decreasing J), as well as the (signed-)error between DepthJ and the Depth

map obtained with dense wavelet coefficients at all scales. Error is displayed within range [−5m, 5m].

Input image Baseline model Wavelets prediction

Figure 8: Comparing wavelet predictions to a baseline model on the KITTI dataset. On the left we show the input image, and in the

middle column we show the prediction from an off-the-shelf Depth Hints ResNet 50 model [20]. On the right we show an equivalently

trained ResNet 50 model, but with our wavelets in the decoder. We see that our predictions retain the high quality of the baseline predictions,

but are more efficient to predict.

