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1. Architecture of the classifiers

Two types of networks were used in the tests, depending
on the input. For meshes the implemented architecture is
similar to the state-of-the-art encoder used by the CoMA
autoencoder [4]. The structure of the network is shown
in Table 1. It consists of 4 layers of ReLU-activated fast
Chebyshev filters [1] with size K = 6, interleaved by mesh
decimation via iterative edge collapse [2], and a final dense
layer. We refer to this classifier simply as ChebyNet.

Layer Input Size Output Size
Convolution 3889 × 3 3889 × 128
Down-sampling 3889 × 128 1945 × 128
Convolution 1945 × 128 1945 × 128
Down-sampling 1945 × 128 973 × 128
Convolution 973 × 128 973 × 64
Down-sampling 973 × 64 487 × 64
Convolution 487 × 64 487 × 64
Fully Connected 31168 |C|

Table 1: ChebyNet classifier architecture in detail for the
SMAL dataset. n = 3889 is the number of vertices for the
input meshes, and |C| is the number of classes.

For point clouds we used the PointNet classifier [3],
composed by 4 layers of point convolution followed by
batchnorm with ReLU, with layer output sizes 32 ) 128 )

256 ) 512. A maxpool operation is used to output a 512-
dimensional vector, which is then reduced with a ReLU-
activated fully connected network to dimensions: 512 )

256 ) 128 ) 64 ) |C|, where |C| is the number of classes.
Both ChebyNet and PointNet are trained to classify the sub-
ject identity for shapes in CoMA dataset [4], and the ani-
mal species for shapes in SMAL dataset [5]. The accuracy
achieved in each case is reported in Table 2.

SMAL ChebyNet PointNet
train 100% 98.1%
test 100% 94.2%
remeshed - 88.3%
CoMA ChebyNet PointNet
train 99.6% 99.0%
test 99.0% 99.2%

Table 2: Accuracy of the four considered classifiers in terms
of fraction of correct predictions. For the SMAL dataset,
PointNet was evaluated also on remeshed shapes from the
test set, with a random number of vertices within 30% to
50% of the original ones.

2. Additional results

In Fig. 1 we show additional qualitative examples of uni-
versal attacks that due to lack of space were not included in
the main manuscript.

Number of eigenvalues. We performed an analysis of the
generalization capability of our method to previously un-
seen shapes at varying number of eigenvalues k. For each
class we considered 15 shapes on which we performed the
universal attack. We then transfer the deformation to 10 new
shapes of the same class. Results on the CoMA dataset are
reported in Table 3. Considering a larger number of eigen-
values k leads to an increase of success rate for the general-
ization. After k = 60, the performance decreases due to the
difficulty to transfer the spectral deformation ρ, as measured
by the alignment error εi = ‖σ(Xi)(1+ρ)−σ(Xi+Φiαi)‖,
where Xi is the original shape geometry and αi are the per-
turbation coefficients. Since from the perturbed eigenvalues
we synthesize novel shapes (the adversarial examples), we
cannot compute a geometric error because a ground-truth
3D reconstruction does not exist. However, we can mea-
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Figure 1: Example of universal adversarial attacks on PointNet over 7 shapes from the horse class of SMAL. The heatmap
encodes curvature distortion, growing from white to dark red. Even if the original shapes are not isometric, as can be
noted also from their spectra (blue bars), a universal spectral perturbation ρ (red bars, scaled by a factor 103) leads to
misclassification.

k success rate alignment error
10 12% 2.65e-4
20 56% 1.33e-4
30 61% 1.96e-4
40 80% 2.72e-4
60 78% 3.06e-4
80 49% 5.84e-4

100 17% 7.01e-4

Table 3: Dependence of the generalization capability of our
method on the number of used eigenvalues k. The align-
ment error is the absolute error between the target eigenval-
ues computed with ρ, and the eigenvalues of the deformed
shapes; the success rate is the percentage of attacks that in-
duce misclassification.

sure the alignment between the spectrum of the synthesized
shapes and the target perturbed eigenvalues.

Point clouds. In Fig. 2 we show another example of gener-
alization to point clouds; we compare the resulting deforma-
tion with the same perturbation applied to the correspond-
ing mesh. To better appreciate the similarity between the
two we exaggerated the perturbation of the universal attack
by increasing the weight of the adversarial loss c.
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Figure 2: Examples of generalization to point clouds. The
spectral perturbation ρ (red bars, scaled by a factor 103)
was obtained on a set of 15 meshes (not shown). The defor-
mation was then transferred to 2 unseen shapes discretized
both as meshes (white on the left) and as point clouds (light
blue on the right). The deformed shapes are shown in the
last row. As we can see, for each shape the deformations
induced by ρ are approximately the same regardless of the
discretization. Note that here we intentionally enhanced the
strength of the deformation (by increasing the weight of the
adversarial loss) to better appreciate the similarity between
the mesh and point cloud cases.

segmentation. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 652–660, 2017. 1

[4] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and
Michael J. Black. Generating 3D faces using convolutional
mesh autoencoders. In European Conference on Computer
Vision (ECCV), 2018. 1

2



[5] Silvia Zuffi, Angjoo Kanazawa, David Jacobs, and Michael J.
Black. 3D menagerie: Modeling the 3D shape and pose of
animals. In Proc. CVPR, July 2017. 1

3


