
Supplementary Material for Automatic Augmentation Policies for
Self-Supervised Learning

Colorado J Reed*∗†, Sean Metzger∗‡, Aravind Srinivas†, Trevor Darrell†, Kurt Keutzer†

†BAIR, Department of Computer Science, UC Berkeley
‡Graduate Group in Bioengineering (Berkeley/UCSF), Weill Neurosciences Institute & UCSF Neurological Surgery

Notation Definition
ρ Spearman rank correlation
θmoco MoCo encoder
φss Linear self-supervised evaluation

head
D Dataset
K Number of folds used for training

SelfAugment
T Number of augmentations to apply

to each image at each iteration
B Number of policies to consider dur-

ing Bayesian optimization search
P Top number of policies to select

from each fold in SelfAugment
O The set of candidate image transfor-

mations for an augmentation policy
L A loss function
O An image transformations in O
S Set of sub-policies
M A model (e.g. a neural network)
τ τ ∈ S is the sequential application

of Nτ consecutive transformations
Nτ The number of consecutive transfor-

mations to apply in a sub-policy
λ The magnitude of an image transfor-

mation
FAA Fast AutoAugment, from [1]
InfoNCE See Eq. 1
MoCo Momentum Contrast, from [2]

A. Notation and definitions

B. Augmentation transformation details

Following [1, 4], we define the set of transformations used
for SelfAugment and RandAugment, O, as the PIL-based
image transformations in Table 1. Each transformation has a

*equal contribution; correspondence to cjrd@cs.berkeley.edu

minimum and maximum magnitude, λ , where for RandAug-
ment, the entire range is discretized over 30 integers. See
[4, 3] for further details and descriptions of each transforma-
tion.

C. Additional training and experiment details
CIFAR-10, SVHN, ImageNet: Table 4 lists the training

and experimental parameters for CIFAR-10, SVHN, and Im-
ageNet. The training parameters were taken from [2] and
adjusted for 4 GPUs, i.e. the learning rate and batch size were
scaled by 0.5 since [2] experiments were conducted on 8
GPUs. Consult [2] and [5] for MoCo parameter information.
For the linear classifier, we used 50 training iterations where
the learning rate was 10× reduced at 30 and 40 epochs for
ImageNet and 20 and 30 epochs for CIFAR-10 and SVHN.
In [2], the linear layer was trained over 150 iterations with
a reduction at 80 and 100 iterations. In early experiments,
we found the performance converged much earlier, and to re-
duce computational resources, we reduced all linear training
iterations.

VOC07 Following [2], we transfer the ImageNet ResNet-
50 weights to perform object detection using a Faster R-CNN
R50-C4, with BN tuned. We fine-tuned all layers end-to-end.
The image scale is [480, 800] pixels during training and 800
at inference. Training was on the VOC trainval07+12
set and evaluation was on the test2007 set. The R50-
C4 backbones is similar to those available in Detectron21,
where the backbone stops at the conv4 stage, and the box
prediction head consists of the conv5 stage followed by a
BN layer. Table 3 displays the AP/AP50/AP75 breakdown
for three fine-tunings.

COCO2014/Places205: Following [6], we train Lin-
ear SVMs on frozen feature representations. We train
a linear SVM per class for (80 for COCO2014, 205 for
Places205) for the cost values C ∈ 2[−19,−4] ∪ 10[−7,2] We
used 3-fold cross-validation to select the cost parameter
per class and then further calculate the mean average pre-
cision. The features are first normalized in a (N, 9k)

1https://github.com/facebookresearch/detectron2

https://github.com/facebookresearch/detectron2


Table 1: PIL image transformations used for SelfAugment and RandAugment. The min and max magnitude values are taken
and from [3]

Name Description Min (λ = 0.0) Max (λ = 1.0)
ShearX shear the image along the horizontal axis

with magnitude rate
-0.3 0.3

ShearY shear the image along the vertical axis with
magnitude rate

-0.3 0.3

TranslateX translate the image in the horizontal direc-
tion by magnitude percentage

-0.45 0.45

TranslateY translate the image in the vertical direction
by magnitude percentage

-0.45 0.45

Rotate rotate the image by magnitude degrees -30 30

AutoContrast adjust contrast so darkest pixel is black and
lightest is white

0 1

Invert invert the pixels of the image 0 1

Solarize invert the pixels above a magnitude thresh-
old

0 256

Posterize reduce the number of bits for each color to
magnitude

4 8

Contrast adjust image contrast, where magnitude 0
is grey and magnitude 1 is original image

0.1 1.9

Color adjust color of image such that magnitude
0 is black and white and magnitude 1 is
original image

0.1 1.9

Brightness brightness adjustment such that magnitude
0 is black image and 1 is original image

0.1 1.9

Sharpness magnitude 0 is a blurred image and 1 is
original image

0.1 1.9

Cutout cutout a random square from the image with
side length equal to the magnitude percent-
age of pixels

0 0.2

Equalize equalize the image histogram 0 1

matrix, where N is number of samples in data and 9k
is the resized feature dimension, to have norm=1 along
each feature dimension. This normalization step is ap-
plied on evaluation data too. We use the following hyper-
parameter setting for training using LinearSVC sklearn
class: class weight ratio of 2:1 for positive:negative
classes, penalty=l2, loss=squared hinge, tol=1e-4,
dual=True and max iter=2000. Table 2 displays the
Places205 results across five linears SVM trainings for all k
values.



Table 2: Transfer results: Places205 top-1 accuracy for frozen ResNet50 encoder after pre-training, with a linear SVM trained
for scene classification, with k = {1,4,8,16,32,64} labeled training images for each class, averaged over five SVM trainings,
where the errors indicate the standard deviation (see text for details).

Labeled samples 1 4 8 16 32 64
Base Aug 1.35± .03 2.8±0.05 4.18± .11 5.88± .12 8.04± .16 10.13± .15
SelfRandAug 6.17± .05 13.01± .15 18.36± .12 23.13± .11 27.18± .11 30.89± .09
SelfAug (min rot) 3.58± .06 7.85±0.09 11.77± .10 15.60± .17 19.66± .10 23.26± .05
SelfAug (min Info) 2.46± .04 5.36±0.07 8.11± .11 11.04± .07 14.52± .09 17.75± .29
SelfAug (max Info) 5.87± .06 12.73± .14 17.88± .16 22.64± .21 26.95± .12 30.56± .17
SelfAug (minimax) 6.73± .08 14.51± .20 19.89± .18 24.72± .10 28.77± .13 32.35± .09
MoCoV2 6.65± .11 14.06± .13 19.59± .14 24.57± .13 28.56± .08 32.24± .10

Table 3: Transfer Result: For VOC07 test, this table reports the average AP50 and COCO-style AP/AP75 over three runs of
fine-tuning the ResNet50 encoder from ImageNet pre-training, where the errors indicate the standard deviation (see text for
details).

Evaluation AP AP50 AP75
Base Aug 47.08±0.17 74.80±0.17 50.26±0.24
SelfRandAug 53.06±0.21 80.09±0.14 57.58±0.29
SelfAug (min rot) 50.13±0.20 77.66±0.18 53.94±0.21
SelfAug (min Info) 49.18±0.21 76.31±0.17 53.17±0.18
SelfAug (max Info) 52.66±0.18 79.69±0.15 57.33±0.25
SelfAug (minimax) 52.72±0.22 79.79±0.21 57.62±0.27
MoCoV2 53.94±0.23 80.64±0.18 59.34±0.31

Table 4: Detailed training parameters for CIFAR-10, SVHN, and ImageNet experiments carried out in this paper.

-MoCo Params CIFAR 10/SVHN ImageNet
Batch Size 512 128
moco-dim 128 128
moco-k 65536 65536
moco-m 0.999 0.99
moco-t 0.2 0.2
num-gpus 4 4
lr 0.4 0.015
schedule 120, 160 60, 80
momentum 0.9 0.9
weight decay 1e-4 1e-4
Classifier Params
lr 15 30
batch size 256 256
momentum 0.9 0.9
weight decay 0.0 0.0
schedule 20, 30 30, 40
epochs 50 50



D. Correlation study

In this section, we detail the full experimental setup, in-
vestigation, and results from our study of the correlation
between rotation prediction performance with a linear net-
work and supervised downstream task performance. We also
include additional preliminary and ablation studies.

D.1. Correlation study details

We study RandAugment, SelfAugment, and MoCoV2
augmentation policies, and then evaluate the performance
using self-supervised rotation prediction with a linear layer.
For CIFAR-10 and SVHN, we evaluate:

• A base augmentation of random left-right horizontal
flips with p = 0.5 of being applied and random re-
size and crop transformation with magnitude range
(0.2,1.0), trained for 750 epochs.

• On top of the base augmentation2, we performed
a RandAugment grid search with magnitude λ =
{4,5,7,9,11} and number of transformations applied
Nτ = {1,2,3}, evaluated at {100,500} epochs. We ini-
tially included Nτ = 4 in the grid search, but this always
led to a degenerate solution, whereby the training loss
would not minimize the objective function and the eval-
uation would yield a chance result (25% self-supervised
rotation prediction and 10% supervised classification
for CIFAR-10).

• Following [4], we also experimented with scaling the
magnitude parameter λ from [4,11] linearly throughout
the training. We did this for each of the three Nτ values
and evaluated the results at 500 epochs.

• As part of the SelfAugment algorithm, we trained an
augmentation policy consisting of each of the fifteen
individual transformations in RandAugment. In addi-
tion, we include the random resize crop transformation,
as it was shown to be the best performing individual
transformation in [7]. The magnitude for each transfor-
mation was stochastically selected from its magnitude
range defined in §B at each iteration. Each of these 16
transformations were evaluated after a short training
cycle of 100 epochs. Each of these transformations
were applied on top of a random left-right horizontal
flip applied with p = 0.5.

• Using the rotation prediction results from each of the
individual transformation policies, we selected the top
KT = {3,6,9} augmentations, and trained RandAug-
ment using only these transformations. We performed
this training for λ = {4,7} with Nτ = 2, evaluated at
500 epochs.

2Using this base augmentation systematically improved all RandAug-
ment results over not using a base augmentation, both in terms of its rotation
prediction performance and supervised linear classification performance.

• We further include the four SelfAugment policies from
each of its loss functions, evaluated at 750 epochs.

In total, this yields 61 different models for each of CIFAR-
10/SVHN. For ImageNet we evaluate:

• A base augmentation of random left-right horizontal
flips with p = 0.5 of being applied and random re-
size and crop transformation with magnitude range
(0.2,1.0), trained for 100 epochs.

• On top of the base augmentation3, we performed
a RandAugment grid search with magnitude λ =
{5,7,9,11,13} and number of transformations applied
Nτ = 2, evaluated at {20,60,100} epochs.

• Following [4], we also experimented with scaling the
magnitude parameter λ from [5,13] linearly throughout
the training. We did this for Nτ = 2 and evaluated the
results at 100 epochs.

• As part of the SelfAugment algorithm, we trained an
augmentation policy consisting of each of the fifteen
individual transformations in RandAugment (transfor-
mations listed in §). In addition, we include the random
resize crop transformation, as it was shown to be the
best performing individual transformation in [7]. The
magnitude for each transformation was stochastically
selected from its magnitude range defined in §B at each
iteration. Each of these 16 transformations were evalu-
ated after a short training cycle of 100 epochs. Each of
these transformations were applied on top of a random
left-right horizontal flip applied with p = 0.5.

• We further included the five SelfAugment policies from
each of its loss functions, evaluated at 100 epochs.

• To further compare with state-of-the-art models, we
compare with the MoCoV2 augmentation policy evalu-
ated at 100,200 epochs

In total, this yields 43 different models for ImageNet.
Supplementing the main correlation results shown in the

experiments section, Figure 1 shows the the ImageNet ro-
tation prediction correlations with transfer performance to
VOC07 for all AP, AP50, and AP75 evaluations. Figure 2
shows the ImageNet rotation prediction correlations with
transfer performance to Places205 few label scene classifi-
cation using k = {1,4,8,16,32,64} labels per scene class.
For both VOC07 and Places205, the Spearman rank correla-
tion with rotation prediction is indicated with ρ , while the
rank correlation with the supervised ImageNet classification
performance is indicated with ρs. Across all evaluation met-
rics, the rotation correlation is higher than the supervised
correlation.

3Using this base augmentation systematically improved all RandAug-
ment results over not using a base augmentation, both in terms of its rotation
prediction performance and supervised linear classification performance.
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Figure 1: The ImageNet rotation prediction correlations with transfer performance to VOC07 for all AP, AP50, and AP75
evaluations. The Spearman rank correlation with rotation prediction is indicated with ρ , while the rank correlation with the
supervised ImageNet classification performance is indicated with ρs.
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Figure 2: The ImageNet rotation prediction correlations with transfer performance to Places205 few label scene classification
using k = {1,4,8,16,32,64} labels per scene class. The Spearman rank correlation with rotation prediction is indicated with
ρ , while the rank correlation with the supervised ImageNet classification performance is indicated with ρs.

D.2. Correlation with an MLP rotation prediction

When following the same evaluation protocol, except
using a 2 layer MLP instead of a linear layer for rotation
prediction, we find that the CIFAR-10 Spearman rank cor-
relation with the supervised linear classification drops from
0.966 to 0.904 while the rotation prediction performance in-
creases by 3.4±1.4% across all evaluations. This correlation
drop indicates that using a simple linear layer, rather than
a more complicated network, is ideal for evaluation of the
learned representations. A more complicated network can
learn its own representation, which distances the evaluation
from the learned representations.

D.3. Correlation demonstration: finding and tuning
transformation parameters

Figure 3 shows the performance of single-transform poli-
cies for CIFAR-10. The left and middle plots show the
supervised classification accuracy compared with the In-
foNCE loss and top-1 contrastive accuracy (how well the
instance contrastive model predicts the augmented image
pairs), while the right plot shows the rotation prediction ac-
curacy for the image transformations in O evaluated after
100 training epochs. Using high or low values of InfoNCE
or contrastive accuracy to select the best transformations
would select a mixture of mediocre transformations, missing



the top performing transformation in the middle. By using
the rotation prediction, each transformation has a clear linear
relationship with the supervised performance, enabling the
unsupervised selection of the best transformations.

Next, Figure 4 demonstrates that the individual image
transformation parameters can also be determined through
rotation prediction. Specifically, we pre-trained CIFAR-10
using the default MoCoV2 augmentation policy. Then, for
each of the fifteen transformation in O, we applied the trans-
formation with probability 1.0 and a magnitude λ randomly
selected between 0 and {0.25,0.5,0.75,1.0}. We evaluate
the individual transformation’s magnitude parameter using
the supervised top-1 linear accuracy (classification) and self-
supervised top-1 rotation prediction (rotation) as shown in
Figure 4. Overall, the supervised linear classification and
self-supervised rotation prediction select the the same mag-
nitude parameter for 13 of the 15 transformations and have a
strong Spearman rank correlation of 0.929. Taken together,
these results indicate that rotation prediction can be used to
both select individual transformations as well as the parame-
ters of the transformations for an augmentation policy.

D.4. Rotation correlation shows the benefit of Gaus-
sian blur on ImageNet

In [7], the authors conducted a thorough, supervised in-
vestigation of a diverse set of image transformations that
could be used in an augmentation policy for instance con-
trastive learning with ImageNet. The Gaussian blur
augmentation was shown to be one of the most effective im-
age transformations for ImageNet, and indeed, [5] released
a follow-up paper showing that the MoCo framework [2]
significantly benefits from its use. We find that our rotation-
based evaluation similarly indicates that Gaussian blur is an
effective image transformation for ImageNet under the same
conditions studied in [5]:

Augmentation Policy Top-1 Supervised Acc. Rotate Acc.
MoCoV1 60.6 72.1

MoCoV2 no G-Blur 63.6 74.1
MoCoV2 67.7 77.0

D.5. Rotation invariant and black-and-white im-
ages

We note that certain types of images are not amenable to
certain self-supervised evaluations. For instance, rotation
evaluation will not work for rotation invariant images (such
as images of textures) as the self-supervised evaluation task
will not be able to discern the rotations. Similarly, a jigsaw
task will not be able to discern images with a interchangeable
quadrants (such as centered images of flowers), and a color
prediction tasks will not work on black and white images
(such as x-ray images). Therefore, for each image dataset,

we recommend using a self-supervised evaluation that does
not evaluate an invariant factor of the image dataset, e.g.
use rotation prediction if the images are black-and-white.
We leave an investigation of the trade-offs between image
invariances and self-supervised evaluations to future work.
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Figure 3: For CIFAR-10, we plot the supervised classification accuracy (y-axis) vs the InfoNCE loss function (left), contrastive
top-1 accuracy (middle), and self-supervised linear rotation accuracy (right), for a self-supervised model trained using one of
each transformation used by SelfAugment. Neither of the left two training metrics are a consistent measure of the quality of
the representations, while the rotation prediction accuracy provides a strong linear relationship.
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Figure 4: Result of magnitude sweeps on CIFAR-10 for the 15 transformations optimized in SelfAugment. For each
augmentation, we train MoCoV2 for 250 epochs using the usual MoCoV2 augmentations, and then added the single
augmentation on top. We then vary the range of possible augmentation strength λ parameter to be between 0 and the value on
the x-axis, and randomly select a value in that range, and apply the augmentation with 100 % probability. Rotation accuracy
and classification accuracy have Spearman rank correlation ρ = .929, demonstrating how the relationship between rotation
accuracy and classification accuracy can be used to select the parameters of individual transformations.



E. Modified RV similarity analysis

To obtain a better understanding of why the the rotation
evaluation has the best correlation with the supervised evalu-
ation performance, we conduct a similarity analysis of the
activations from the linear evaluation layers. Specifically,
we use a modified RV coefficient (as in [8]) to measure the
similarity between the activations from the rotation, jigsaw,
and colorization evaluation layers on top of the frozen en-
coder network. The RV coefficient is a matrix correlation
method that compares paired comparisons X and Y with
different number of columns, and is defined as:

RV (X ,Y ) =
tr(XX ′YY ′)√

tr[(XX ′)2]tr[(YY ′)2]
(1)

The RV coefficient approaches 1 when datasets are small,
even for random and unrelated matricies. To fix this is-
sue, the modified RV coefficient (RV2) ignores the diagonal
elements of XX ′ and YY ′, which pushes the numerator to
zero when X and Y are random matricies. Hence, the RV2
similarity metric is less sensitive to dataset size.

RV2(X ,Y ) =
Vec( ˜XX ′)′Vec( ˜YY ′)√

Vec( ˜XX ′)′Vec( ˜XX ′)×Vec( ˜YY ′)′Vec( ˜YY ′)
(2)

Where ˜XX ′ = XX ′− diag(XX ′) and similarly for ˜YY ′.
This metric is invariant to orthogonal transformations and
isomorphic scaling, but critically not invariant to arbitrary
linear invertible linear transformations between representa-
tions (e.g. batch normalization). In [8], the authors show
that the RV2 metric could recover expected similarity pat-
terns in neural networks and that it could be used to suggest
hypotheses about intermediate representations in deep neural
networks.

To study the similarity between linear layers trained using
the rotation prediction, jigsaw, and colorization tasks and
linear layers trained using supervised learning, we evaluated
the RV2 coefficient of 32 different linear layers trained on
top of frozen encoders using the CIFAR-10 dataset. Each
of the 32 encoders used a different augmentation policy
during training. We evaluated the activations at the final
linear layer across the entire validation set of CIFAR-10.
We used the same set of image transformations before feed-
ing each image into the the network (center crop to 28x28,
and normalization across each channel by it’s mean and
std deviation across the dataset) across all self supervised
tasks. As demonstrated in Figure 5, activations from rota-
tion prediction layers had significantly stronger similarities
with activations from supervised layers than other self super-
vised tasks. This demonstrates that the rotation prediction
task uses the learned representation in a significantly more
similar way for evaluation compared to the other evaluation

tasks, and provides evidence that rotation evaluation perfor-
mance not only correlates, but so does the activations from
the evaluation layer.

F. Augmentation policy exploration via
Bayesian optimization

As in [1], we used policy exploration search to automate
the augmentation search. Since there are an infinite number
of possible policies, we applied Bayesian optimization to
explore augmentation strategies. In line 11 in Algorithm
1, we employed the Expected Improvement (EI) criterion
as an acquisition function to explore B candidate policies
efficiently: EI(T ) = E[min(L(θ ,φ |T (DA)−L†,0)]. Here
L† represents a constant threshold determined by the quantile
of observations amongst previously explored policies. As in
[1], we used variable kernel density estimation on a graph-
structured search space to approximate the criterion. Since
this method is already implemented in the tree-structured
Parzen estimator algorithm we used Ray4 and Hyperopt
to implement this in parallel.

In [1], the authors try to align distributions of data using
supervised loss, then retrain the network using supervised
loss. Since we do not directly retrain with the loss func-
tions used to find augmentations, our method can instead be
thought of as finding distributions of the data - via augmen-
tation policies - that minimize (or maximize) alignment as
defined by our loss functions.

The full list of augmentations and range of magnitudes
explored during augmentation policy exploration are detailed
in Table 1.

G. SelfAugment Loss Functions
In this section we discuss the loss functions used for Self-

Augment in greater detail and their resulting augmentation
policies which are summarized in Figure 6.

• Min. eval error:

T SS = argminT LSS(θM,φss|T (DA))

where LSS is the self-supervised evaluation loss, which
yields policies that should result in improved perfor-
mance of the evaluation if we were to retrain the linear
classifier with the selected augmentations. However,
since the augmentations are instead used to create a
contrastive learning task, it is important that we find a
different set of augmentations that take the contrastive
task into consideration. Indeed, using this loss func-
tion results in weak expected augmentation strengths
(see Figure 6), resulting in relatively poor downstream
performance.

4https://github.com/ray-project/ray

https://github.com/ray-project/ray


Figure 5: Comparisons of RV2 Similarity [8] between each self supervised task studied and supervised linear layers. Rotation
prediction layers have stronger similarity with supervised linear layers than either of the jigsaw and colorization self supervised
tasks (p < 2.3x10−5, Wilcoxon one-tailed signed rank test). The datapoint with highest similarity was using the strongest
settings of SelfRandAugment, which learned poor representations with near chance performance on the supervised downstream
task, explaining why similarity was so high across tasks. The strong similarity between rotation prediction and supervised
linear layers suggests that they use the underlying representations in a similar way for evaluation, explaining why rotation
prediction makes for a strong evaluation metric that correlates more strongly with supervised evaluation than the jigsaw and
colorization evaluations.

• Min. InfoNCE:

T I-min = argminT LNCE(θM|T (DA))

where LNCE is the InfoNCE loss from Eq. 1, which
yields policies that make it easier to distinguish image
pairs in the contrastive feature space. This loss func-
tion should results in small magnitude augmentations,
since a trivial way to minimize InfoNCE is to apply
no transforms - resulting in trivial minimization of the
InfoNCE loss. Indeed, the loss function yields (i) lower
expected augmentation strengths and (ii) emphasizes
transformations like Sharpness, Figure 6. We did
not expect this loss function to perform well, and was
primarily included as a sanity check that minimizing
InfoNCE would result in light augmentations.

• Max InfoNCE:

T I-max = argminT −LNCE(θM|T (DA))

negates the previous loss function, yielding policies
that make it difficult to distinguish image pairs in the
feature space. In practice, this results in high magni-
tude augmentations and emphasizes augmentations like
Invert. We hypothesized that maximizing InfoNCE
could result in strong augmentations that could create
a challenging contrastive task. However, the augmen-
tations do not have any regularizing that would ensure
the image maintains important features, leading to rela-
tively suboptimal performance.

• Min Lss max LNCE: T minmax = argminT Lss−LNCE
yields policies with difficult transformations that maxi-
mize InfoNCE, while maintaining salient object fea-
tures that minimize the self-supervised evaluation.

When using a linear rotation evaluation prediction, we
found this loss function to have the strongest perfor-
mance for contrastive learning. In practice, we nor-
malized Lrot and LNCE by their expected value for the
training data across the K-folds when training with
the base augmentation, since LNCE was usually higher
than Lrot, but had each loss contribute equally for aug-
mentation policy selection. Policies that optimized
this loss emphasized transformations like Equalize,
AutoContrast and Contrast more than others.
For ImageNet, these transformations proved to be chal-
lenging yet useful. Notably, they closely resemble the
effects of MoCov2 and SimCLR’s Color Jitter [5].

Finally, while min Lrot max LNCE works well, one could
potentially gain performance by weighting the importance
of minimizing Lrot vs maximizing LNCE. Hence we pro-
pose experimenting with different values of λNCE and λrot
when optimizing the following objective: min λrotLrot max
λNCELNCE.

H. Using the Original MoCoV2 [5] policy as
the base policy

We replicated our SelfAugment results in Table 1 for
the CIFAR10 dataset, where instead of using a single aug-
mentation as the base policy, we used the full augmentation
policy from [5] as the base policy. Results are shown in
Table 5. This improved performance when we used the
augmentation policies learned using min Lrot as feedback.
Minimizing rotation may be the best approach for learning
augmentation policies on top of established augmentation
policies, because it produces augmentations that would im-
prove performance if we retrained the linear classifier with
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Figure 6: Visualization of the augmentation policies found with SelfAugment as well as Fast AutoAugment for supervised
learning. This figure shows expected augmentation strength (mean magnitude×normalized probability) of each augmentation,
evaluated across all datasets and loss functions. As expected, minimizing InfoNCE results in augmentations with smaller
magnitude, and emphasizes augmentations that do not alter the image much (e.g. Sharpness). Maximizing InfoNCE results
in augmentations with a larger magnitude and emphasizes augmentations (e.g. Invert, Solarize) which heavily alter
the image. The minimax loss function yields an augmentation policy that strikes a middle ground between the two, with strong
augmentations, but reduced emphasis on heavy augmentations like Invert. Comparison of the policies that worked best with
contrastive learning relative to the original FAA policies reveals that our policies are (i) stronger, and (ii) have more variability
in a single augmentation’s E(λ*p) relative to policies that were used for supervised learning.

the selected augmentations. Since the augmentation policy
for contrastive learning is already quite strong when we use
the MoCov2 augmentations as the base policy, this likely
allows us to focus on improving generalization [1], leading
to improved performance. Interestingly, the other SelfAug-
ment Loss functions (see Appendix G for more detail) all
deteriorated performance. This is likely because trying to
change the contrastive performance of such a finely tuned set
of augmentations requires more careful tuning. It is possible
the minimax approach may result in improved performance
with more careful tuning of the weighting of the rotation and
contrastive losses.

It is also worth noting that using the best policy using
the MoCov2 augmentations as the base augmentation set,
then using SelfAugment with min Lrot as feedback slightly
outperformed the full SelfAugment pipeline with min Lrot
max LICL as feedback. For datasets where researchers are
confident that the augmentations from [5] are a strong base
set of augmentations, this approach is worth exploring, and
can be easily done using our pipeline. However, it is not
possible when a good base augmentation policy is unknown.
We leave further exploration of this approach as future re-
search, as we chose to focus on the case where no existing
augmentation policy is known.

unsup. feedback C10
SelfAug (min rot) 92.8

SelfAug (min Info) 92.2
SelfAug (max Info) 90.5
SelfAug (minimax) 90.9

supervised feedback
MoCov2[5] 92.3

Table 5: Results on CIFAR10 when using SelfAugment but
using the augmentation policy from [5] as the base policy.
Because the base augmentation policy is already strong, min-
imizing rotation loss during the augmentation policy search
produces the best results. The results with the MoCoV2
augmentations as the base policy and minimization of ro-
tation prediction slightly outperform the best results using
SelfAugment and the minimax loss as feedback (92.6, see
Table 1).

I. Computational Efficiency
SelfAugment can be broken up into three steps:

1. Finding the base augmentation. This entails training
16 instances of MoCoV2 for 10-15% of the total epochs
typically used for pre-training, using all of the training
data available.

2. Training on K-Folds using the base augmentation.



For CIFAR-10/SVHN we used the entire training
dataset for this step, and evaluated for the same number
of epochs as we use to train the final models, using all
the training data from each fold. For ImageNet, we used
a subset of 50,000 images and trained for 5x longer, to
make up for the smaller amount of images. This was
done to improve the computational efficiency of step 3.

3. Finding augmentation policies. Because we only
need to complete forward passes of the network, this
is relatively efficient. We use the held out data from
each of the K-folds to evaluate the model with different
augmentation policies applied.

It is important to note that steps 1 and 2 are shared across
all augmentation policies found with SelfAug, meaning that
they do not need to be repeated to find a new augmentation
policy using a different loss function. This could allow for
rapid experimentation with new loss functions for SelfAug-
ment in the future.

Meanwhile, SelfRandAug’s computational time is com-
pletely determined by the user-defined search space over
λ and Nτ . However, because it requires training multiple
models to completion on the entire dataset, it is more compu-
tationally intensive than SelfAug. SelfRandAug’s computa-
tion time could be reduced by training on a subset of Images
in a large training set.

Finally, it is worth noting that evaluating a single aug-
mentation’s various hyperparameters for MoCoV2 can be
extremely computationally expensive. Because pre-training
MoCoV2 for 100 epochs then training a linear head for eval-
uation takes a total of 244 GPU Hours on a Tesla V100 GPU,
searching over various augmentations and their strength and
probability parameters can easily require thousands of GPU
hours. Hence, an additional contribution of this work is pro-
viding a fast, automatic method for selecting augmentations
for instance contrastive learning.

Table 6: Computational time, measured in one hour on one
NVIDIA Tesla V100 GPU for SelfAugment and SelfRan-
dAug on ImageNet. SelfAug times are evaluated when using
the minimax loss function, which takes the most time be-
cause we evaluate both InfoNCE and rotation loss. For
SelfRandAug, computational time reflects our grid search
over λ = {5,7,9,11,13}, Nτ = 2, plus the time to train a
rotation head on top of each representation. This time could
be larger or smaller depending on the parameters λ and Nτ a
user wants to search over.

Algorithm Find Base Aug Train Find Aug Total
SelfAug 476.6 155.0 97.7 729.4
SelfRandAug 1220.0
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