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1. Pretrained Features, RotNet Auxiliary Tasks
and Generalization

Let us take a closer look at the application of RotNet-
based methods for image anomaly detection. We will ven-
ture to understand why initializing RotNets with pretrained
features may actually impair their anomaly detection perfor-
mance. In such cases, a network for rotation classification
is trained on normal samples, and used to classify the ro-
tation (and translations) applied to a test image. Each test
image is checked for its rotation prediction accuracy, which
is assumed to be worse for an anomalous images than for a
a typical normal image.

To correctly classify a rotation of a new image, the net-
work may use traits within the image that are associated
with its correct alignment. Such features may be associated
with the normal class, or with the entire dataset (common to
both the anomalous classes together). For illustrative pur-
poses, let us consider a normal class with images contain-
ing a deer, and the anomalous class with images containing
a horse. The horns of the deer may indicate the “upward”
direction, but so does the position of the sky in the image,
which is often sufficient to classify the rotation correctly.

“Equal contribution

As shown in Tab.5 (in the main text), when initialized with
pretrained features, the RotNet network achieves very good
performance on the auxiliary tasks, both within and outside
the normal class, indicating the use the more general traits
that are common to more classes.

Although at first sight it may appear that the improved
auxiliary task performance should improve the performance
on anomaly detection, this is in fact not the case! The rea-
son is that features that generalize better, achieve better per-
formance on the auxiliary task for anomalous data. The
gap between the performance of normal and anomalous im-
ages of the auxiliary tasks, will therefore be smaller than
with randomly-initialized networks - leading to degraded
anomaly detection performance. For example, consider the
illustrative case described above. A RotNet netwrok that
“overfits” to work only on the normal class deer, relying
on the horns of the deer would classify rotations more ac-
curately on deer images than on horse images (as its main
feature is horns). On the other hand, a RotNet that also uses
more general traits can use the sky position for rotation an-
gle prediction. In this case, it will achieve higher accuracy
for both deer and horse images. The gap in performance
is likely to be reduced, leading to lower anomaly detection
capabilities.

The above argument can be formulated using mutual in-
formation: In cases where the additional traits whice are
unique to the class do not add much information regarding
the correct rotation, over the general features common to
many classes, the class will have limited mutual informa-
tion with the predicted rotation (conditional on the informa-
tion already given by traits common to the entire datasets).
When the conditional mutual information between the pre-
dicted rotation and the class traits decreases, we expect the
predicted rotation to be less discriminative for anomaly de-
tection, as we indeed see in Tab.1.

It is interesting to note that using features learned with
RotNet for our transfer learning approach achieves infe-
rior results to both MHRot and our method. Only through
an ensemble of all rotations, as MHRot does, it achieves
strong performance comparable to the MHRot perfor-



mance. MHRot achieved 89.7% in our re-implementation.
Using the MHRot features as 1y, we compute the KNN dis-
tance of the unadapted features between the test set images
and the train set image transformed by the same transforma-
tion. When ensembling the 36 transformations - and using
the average kNN distance, yields 88.7%. Another metric we
examined is computing the average kNN distance between
test data transformed under a specfic transformation and
the training set transformed by another transformation. Us-
ing the average same-transformation kNN distance minus
the average different transformation kNN distance, achieves
89.8% - a little better than the RotNet performance.

2. Implementation Details
2.1. PANDA

Optimization: We finetune the two last blocks of an Im-
ageNet pretrained ResNetl152 using SGD optimizer with
weight decay of w = 5-10~°, and momentum of m = 0.9.
We use G = 10~2 gradient clipping. To have a compara-
ble amount of training in the different dataset. We define
the duration of each of our train using a constant number of
minibatches, 32 samples each.

EWC: We use the fisher information matrix as obtained
by [1], as explained in Sec.3 in the main text. We weight
the EWC loss with A = 10*. After obtaining EWC regular-
ization, we train our net training on 7.8k minibatches.

Early stopping/Sample-wise early stopping: We save a
copy of the net every 5 epochs. For early stopping we
used the copy trained on 2.3k minibatches. For sample-
wise early stopping we try all copies trained on up to 150k
image samples (including repetitions).

Anomaly scoring: Unless specified otherwise, we score
the anomalies according to the kNN method with & = 2
nearest neighbours.

SES distance normalization: When comparing different
networks as in PANDA-SES method, we normalize each set
of features by the typical kNN distance of its normal train
features. To obtain the typical normal distance we would
like to compute the average on the normal samples. How-
ever, computing the distance between normal training data
has an issue: each point is its own nearest neighbour. In-
stead, we split the train set features (90% vs. 10%), and
compute the kNN between the 10% validation images and
the gallery 90% images.

PANDA Outlier Exposure: The method was described
in Sec.3 of the main text. For synthetic outlier images, we
used the first 48k images of 80 Million Tiny Images [2] with
CIFAR10 and CIFAR100 images removed. We finetune the
last block of an ImageNet pretrained ResNet152 with SGD
optimizer using 75 epochs and the following parameters:
learning rate: 0.1 with gradient clipping: 1e-3, momentum:
0.9, and no weight decay.

2.2. Anomaly Detection Baselines

We compare to the following methods:

OC-SVM: One-class SVM with the RBF kernel. The
hyper-parameters (v € {0.1,...,0.9},v € {277,...,2%})
were optimized to maximize ROCAUC.

DeepSVDD: We resize all the images to 32 x 32 pixels
and use the official pyTorch implementation with the CI-
FAR10 configuration.

MHRot [3]: An improved version of the original Rot-
Net approach. For high-resolution images we used the cur-
rent GitHub implementation. For low resolution images, we
modified the code to the architecture described in the paper,
replicating the numbers in the paper on CIFAR10.

Outlier Exposure (MHRot): We use the outlier exposure
performance as reported in [3].

2.3. SPADE

Architecture: In all experiments, we use a Wide-
ResNet50 x 2 feature extractor, which was pre-trained on
ImageNet.

Resolution: MVTec images were resized to 256 x 256
and cropped to 224 x 224. All metrics were calculated at
256 x 256 image resolution, and we used cv2.INTERAREA
for resizing when needed.

Layers: Unless otherwise specified, we used features
from the ResNet at the end of the first block (56 x 56), sec-
ond block (28 x 28) and third block (14 x 14), all with
equal weights. In Tab. 2 we compare different level of the
feature pyramid as feature descriptor. We experienced that
using activations of too high resolution (56 x 56) signifi-
cantly hurts performance due to limited context, while using
the higher levels on their own, results in diminished perfor-
mance (due to lower resolution). Using a combination of
all three upstream layers in the pyramid results in the best
performance.

Combining features from different layers: We evaluated
two ways of combining per-pixel features extracted from
different layers. Concatenation - resampling the activation
to the same resolutions and concatenating all per-pixel fea-
tures to form a combined feature. Ensembling - computing
the per-pixel anomaly score using the per-pixel feature of
each layer, and adding the per-pixel per-layer scores of all
layers to form a combined score. We found the ensemble
approach was more robust and yielded a bit better results.
Therefore, we report it.

Postprocessing: ~ After computing the pixel-wise
anomaly score for each image, we smoothed the results
with a Gaussian filter (o = 5).

For fast nearest neighbour implementation, we used the
FAISS library [4].



Table 1: Pretrained vs. raw initialization anomaly detection performance (ROC AUC %)

CIFARI10 class 0 1 2 3 4 5 6 7 8 9 Avg
Pretrained MHRot 70.1 937 844 76.1 89.7 873 91.1 944 86.8 908 864
MHRot 775 969 873 809 927 902 909 965 952 933 090.1

Table 2: Anomaly segmentation accuracy on MV Tec with different ResNet layers (PRO %)

Summed layers Layers 0,1,2 LayerO Layer1 Layer?2
Carpet 98.9 86.7 97.9 98.8
Grid 97.6 98.9 98.9 96.3
Leather 99.1 98.3 99.3 99.0
Tile 94.4 80.5 91.1 94.2
Wood 93.7 92.3 94.5 92.5
Bottle 98.1 89.6 98.0 97.9
Cable 96.4 70.8 93.5 96.9
Capsule 99.0 97.3 98.8 98.7
Hazelnut 98.6 96.6 97.6 98.6
Metal nut 97.4 88.4 97.0 96.7
Pill 96.4 95.9 95.8 95.9
Screw 99.2 98.8 99.4 98.6
Toothbrush 98.8 96.9 98.8 98.6
Transistor 94.2 71.0 84.0 95.9
Zipper 98.1 96.4 97.9 97.7
Average 97.3 90.6 96.2 97.1

3. Datasets

Standard datasets: We evaluate our method on a set of
commonly used datasets: CIFARIO [5]: Consists of RGB
images of 10 object classes. Fashion MNIST [6]: Consists
of grayscale images of 10 fashion item classes. CIFARI00
[5]: We use the coarse-grained version that consists of 20
classes. DogsVsCats: High resolution color images of two
classes: cats and dogs. The data were extracted from the
ASIRRA dataset[7], we split each class to the first 10,000
images as train and the last 2,500 as test.

Small datasets: We report results on several small
datasets from different domains: 102 Category Flowers &
Caltech-UCSD Birds 200 [8] [9]: For each of those datasets
we evaluated the methods using only the first 20 classes as
normal train set, and using the entire test set for evaluation.
MVTec [10]: This datasets contain 15 different industrial
products, with normal images of proper products for train
and 1 — 9 types of manufacturing errors as anomalies. The
anomalies in MVTec are in-class i.e. the anomalous im-
ages come from the same class of normal images with subtle
variations. We also use the MVTec dataset for the anomaly
segmentation results.

Symmetric datasets: We evaluated our method on
datasets that contain symmetries, such as images that have

no preferred angle (microscopy, aerial images.): WBC [11]:
We used the 4 big classes in ”Dataset 1” of microscopy im-
ages of white blood cells, and a 80%/20% train-test split.
DIOR [12]: We preprocessed the DIOR aerial image dataset
by taking the segmented object in classes that have more
than 50 images with size larger than 120 x 120 pixels.
We can see that RotNet-type methods perform particularly
poorly on such datasets.

4. Choosing the Layers to Finetune

Fine-tuning all layers is prone to feature collapse, even
with continual learning (see Tab.3). Finetuning Blocks 3
& 4, or 2, 3 & 4, results in similar performance. Finetuning
only block 4 results in similar performance to linear whiten-
ing of the features according to the train samples (94.6 with
whitening vs. 94.8 with finetuning only the last block).
Similar effect as can be seen in the original DeepSVDD ar-
chitecture (see Tab.4). We therefore recommend finetuning
Blocks 3&4.

5. SPADE: Detailed Results

In this section, we report the full results for SPADE and
its relevant baselines. We evaluate our method using two es-
tablished metrics. The first is per-pixel ROCAUC. The ROC



Table 3: Performance of finetuning different ResNet blocks
(CIFAR10 w. EWC, ROC AUC %)

with std
Trained Blocks 1,2,3,4 2,34 34 4
Avg 94.9 959 962 9438

curve is calculated by first computing the anomaly score of
each pixel and then scanning over the range of thresholds,
on pixels from all test images together. The anomalous cat-
egory is designated as positive. It was noted by several
previous works that ROCAUC is biased in favor of large
anomalies. In order to reduce this bias, Bergmann et al [13]
propose the PRO (per-region overlap) curve metric. They
first separate anomaly masks into their connected compo-
nents, therefore dividing them into individual anomaly re-
gions. By changing the detection threshold, they scan over
false positive rates (FPR), for each FPR they compute PRO
i.e. the proportion of the pixels of each region that are de-
tected as anomalous. The PRO score at this FPR is the aver-
age coverage across all anomalous regions. The PRO curve
metric computes the integral across FPR rates from 0 to 0.3.
The PRO score is the normalized value of this integral. We
can see from Tab. 6 and Tab. 5 that our method significantly
outperforms the baselines in terms of both metrics. Quali-
tative results of our method are presented in Fig. 1.



Table 4: Deep SVDD vs. PCA Whitening Anomaly Detection Performance (ROC AUC %)

with std
CIFAR1Oclass O 1 2 3 4 5 6 7 8 9 Avg

PCA whitening 62.0 63.6 49.7 599 598 658 683 680 755 712 6438
Deep SVDD 59.7 643 484 615 613 655 70.1 689 753 725 64.6

Table 5: Sub-Image anomaly detection accuracy on MVTec (ROCAUC %)

AFssiv AErs AnoGAN CNNDict TI VM CAVGA-R, SPADE

Carpet 87 59 54 72 88 - - 98.6
Grid 94 90 58 59 72 - - 99.0
Leather 78 75 64 87 97 - - 99.5
Tile 59 51 50 93 41 - - 89.8
Wood 73 73 62 91 78 - - 95.8
Bottle 93 86 86 78 - 82 - 98.1
Cable 82 86 78 79 - - - 93.2
Capsule 94 88 84 84 - 76 - 98.6
Hazelnut 97 95 87 72 - - - 98.9
Metal nut 89 86 76 82 - 60 - 96.9
Pill 91 85 87 68 - 83 - 96.5
Screw 96 96 80 87 - 94 - 99.5
Toothbrush 92 93 90 77 68 - 98.9
Transistor 90 86 80 66 - - - 81.0
Zipper 88 77 78 76 - - - 98.8
Average 87 82 74 78 75T 89 96.2

Table 6: Sub-Image anomaly detection accuracy on MVTec (PRO %)

Student 1-NN OC-SVM /,-AE  VAE SSIM-AE CNN-Dict SPADE

Carpet 69.5 51.2 35.5 45.6  50.1 64.7 46.9 96.1
Grid 81.9 22.8 12.5 582 224 84.9 18.3 97.0
Leather 81.9 44.6 30.6 819 635 56.1 64.1 98.8
Tile 91.2 82.2 72.2 89.7  87.0 17.5 79.7 77.1
Wood 72.5 50.2 33.6 7277 62.8 60.5 62.1 93.8
Bottle 91.8 89.8 85.0 91.0 89.7 834 74.2 95.6
Cable 86.5 80.6 43.1 825 654 47.8 55.8 85.3
Capsule 91.6 63.1 55.4 86.2  52.6 86.0 30.6 95.5
Hazelnut 93.7 86.1 61.6 91.7 878 91.6 84.4 94.8
Metal nut 89.5 70.5 31.9 83.0 57.6 60.3 35.8 94.1
Pill 93.5 72.5 54.4 89.3 769 83.0 46.0 96.2
Screw 92.8 60.4 64.4 754 559 88.7 27.7 97.4
Toothbrush 86.3 67.5 53.8 822 693 78.4 15.1 94.4
Transistor 70.1 68.0 49.6 72.8  62.6 72.5 62.8 67.8
Zipper 93.3 51.2 355 839 549 66.5 70.3 96.9

Average 85.7 64 479 79 63.9 69.4 51.5 92.1




Figure 1: An evaluation of SPADE on detecting anomalies between flowers with or without insects (taken from one category
of 102 Category Flower Dataset [8]) and bird varieties (taken from Caltech-UCSD Birds 200) [14]. (left to right) i) An
anomalous image ii) A normal train set image iii) The mask detected by SPADE iv) The predicted anomalous image pixels.

SPADE was able to detect the insect on the anomalous flower (top), the white colors of the anomalous albatross (center) and
the red spot on the anomalous bird (bottom).
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