Appendix

In this section, we provide: (1) algorithm details
and ablation studies of Geometric Selective Search (Ap-
pendix A); (2) introduction of the shape detection algorithm
(Appendix B); (3) additional implementation details (Ap-
pendix C); (4) details of the integration of an external object
prior (Appendix D); and (5) per-class segmentation results;
(6) additional qualitative results (Appendix F).

A. Geometric Selective Search (GSS)

As introduced in the main paper § 3.3, the goal of GSS
is to capture all possible object locations in 3D space. We
formulate a bottom-up algorithm where the key idea is to
utilize the geometric and semantic cues for guiding 3D pro-
posal generation.

A.1. Approach

Given an input point cloud with unoriented normals, we
first detect primitive shapes using a region growing based
method [22] as detailed in Appendix B. It outputs a set of
detected planes with assigned points, i.e., each point is as-
signed to at most one plane or none.

We then apply hierarchical agglomerative clustering
(HAC) to generate the candidate bounding boxes from the
detected planes. We first initialize a region set with the
detected planes, and then compute the similarity score s
between all neighboring regions in the set. Two regions
are neighboring if the corresponding convex hull of them
overlap. To overcome the artifacts of the point cloud, we
randomly jitter the points of each region before computing
their convex hull. This technique greatly improves the re-
sults in practice as verified in Fig. 4. Once the neighboring
relationships and similarity scores are computed, the two
most similar regions are grouped into a new region. We
then generate an axis-aligned 3D box for the new region
as a proposal. New similarity scores are calculated between
the resulting region and its neighbors. HAC is repeated until
no neighbors can be found or only a single region remains.
We provide the detailed pseudo-code in Alg. 3.

In order to pick which two regions n;, n; to group, we
use the similarity score s(n;,n;) =

wlscolor(nia nj)+w255ize(nia nj)+ (13)

W3 Syolume (N4, N ) +wWa a1 (N5, Nj ) +Ws Sgeg (N4, 115),
where w; € {0,1} Vi € {1,---,5} are binary indicators.
Binary weights are used over continuous values to encour-
age more diverse outputs following [48]. scolor € [0, 1] mea-
sures the color similarity; sgize and Syoume € [0, 1] measure
size and volume compatibility and encourage small regions
to merge early; sg; € [0, 1] measures how well two regions
are aligned; and sg,(n;,n;) € [0, 1] measures high-level
semantic similarities. We detail each metric next.
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Algorithm 3 Geometric Selective Search (GSS)

Input: point cloud P
Output: 3D proposal set R
1: Detect shapes from P — initial regions N' = {n1,ng,--- }
2: Initialize similarity set S = @, proposal set R = 0
3: for each neighboring region pair (n;, n;) do
S =S Us(ng,ny) > compute and store similarities
while S # 0 do > HAC
Get the most similar pair s(n;, n;) = max(S)
Remove similarities regarding n; : S = S\ s(ng, *)
Remove similarities regarding n; : S =38\ s(nj, *)
Update region set N' = N\ n;, N' = N \ n;
Merge and generate new region ni = n; Un;
Compute similarity of ny and its neighbors in N: S =
{s(ng,n’) : neighbor(ny,n’) = True ¥n’ € N'}
Add new region to A" = N U ny,
Generate 3D proposal R = R U AxisAlignedBox(ny)

=N AR

—_ =
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Color similarity sceor- Color is an informative low-level
cue to guide the plane grouping process. For each region,
we first compute the L.1-normalized color histogram follow-
ing [48]. The similarity score is computed as the histogram
intersection:

Zmln bf,béC

(14)

scolor n;, 1’1]

where b, b are the k-th bin in the color histograms of n;
and n; respectively. Following [48], we use 25 bins for each
HSV color channel and 75 in total for one histogram.

Size similarity s, and volume similarity syoume. These
two metrics encourage small regions to merge early. This
strategy is desirable as it guarantees a bottom-up group-
ing of parts of different objects at multiple locations in 3D
space. It encourages diverse 3D proposals and prevents a
single region from absorbing all other regions gradually. We
compute size similarity

size(n;) + size(n;)
size(P) ’

5size(nia nj) = (15)
where size(n;), size(n, ), size(P) are the size of the axis-
aligned bounding boxes of region n;,n; and the whole
point cloud. Similarly, volume similarity is defined as:

volume(n;) + volume(n;)
volume(P)

Svolume(niv nj) =1- ) (16)

where volume(n; ), volume(n; ), volume(P) are the volume
of the water-tight convex hull of region n;, n; and the whole
point cloud.

Alignment score sgy. This score measures how well two
regions fit into each other and encourage merged regions to
be cohesive. Essentially, if one region is contained in the
other one, they should be merged first to avoid any holes.
Meanwhile, a low score means the two regions don’t fit very



Class ‘cabinet bed chair sofa table door window shelf picture counter desk curtain fridge sc*

toilet sink bathtub other‘mean

Unsupervised GSS
ABO | 0.402 0.4140.4190.4620.4320.327 0.349 0.469 0.121 0.286 0.365 0.342 0.469 0.4210.4150.355 0.325 0.432|0.378
Recall| 86.0 97.5 90.4 99.0 91.1 67.0 86.9 100.0 26.1 75.0 92.1 91.0 982 964 948 91.8 77.4 90.9|86.2
GSS
ABO | 0.449 0.4710.4410.4370.4640.379 0.388 0.446 0.136 0.366 0.381 0.399 0.501 0.478 0.409 0.365 0.400 0.453]0.409
Recall| 90.6 98.8 91.7 98.9 93.7 752 89.7 100.0 279 88.5 945 97.0 96.5 100.0 94.8 929 83.8 92.3|89.3

Table 6: Per-class results of GSS proposals. GSS achieves more than 80% recall rate for all classes except picture (27.9%) and door
(75.2%), where the plan detection algorithm often fails to differentiate these two objects from the surrounding wall. Here sc* refers to the

‘shower curtain’ class.

well, and they may form an unnatural region. We compute
the alignment score:

size(n; Un;) — size(n;) — size(n;)
size(P) ’
a7

san(ng,n;) =1 —

where n; Un,; means the union of two regions, and the other
numbers are identical to the ones used for the computation
of Scolor-

Semantic similarity s,,. The above four metrics are
mainly low-level geometric cues. GSS can also utilize high-
level semantic information, i.e., weakly-supervised seg-
mentation prediction. For each region, we first infer the seg-
mentation mask from S, using the inference procedure de-
scribed in § 4. We then take the most likely class assignment
for each point in the region and compute an L1-normalized
histogram over classes for that region. The similarity score
is computed as the histogram intersection:

me b, 05), (18)

Sseg n;, n]

where b7, b}
Post-processing. To remove the redundant proposals, we
use several post-processing steps: (1) the proposals are first
filtered by a 3D NMS module with an IoU threshold of 0.75;
(2) we then remove the largest bounding boxes after NMS
as it covers the whole scene rather than certain objects due
to the bottom-up nature of HAC; (3) we keep at most 1000

proposals through random sampling.

are the bin of class c in the class histograms.

Diversification strategies. Since a single strategy usually
overfits, we adopt multiple strategies to encourage a diverse
set of proposals, which will eventually lead to a better cov-
erage of all objects in 3D space. Specifically, we first create
a set of complementary strategies, and ensemble their re-
sults afterwards. Highly-overlapping redundant proposals
are removed though an NMS with IoU threshold of 0.75
and we still keep at most 1000 proposals through random
sampling after ensembeling.
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Metric Avg. # boxes MABO AR
Single run

SZ 382.9 0.351 84.1

C 252.0 0.316 70.7

\Y% 366.8 0.367 84.4

F 330.2 0.398 81.8

SG 350.7 0.362 83.9

SZ+V 373.4 0.366 84.5

SZ+SG 369.2 0.353 85.1

V+F 373.3 0.384 85.7

V+SG 385.5 0.362 83.8

SZ+V+SG 377.5 0.391 86.4

V+F+SG 381.6 0.380 84.9

SZ+V+F+SG 369.1 0.387 86.1
Ensembeling

V+F, SZ+V 712.0 0.378 86.2

V+F, SZ+V+SG| 7429 0.409 89.3

Table 7: GSS results using various similarity metrics. SZ, C, V,
F, and SG represent Ssize, Scolor, Svolume, Sfill, and Sseg respectively.

A.2. Experiments

In this sub-section we evaluate the proposal quality of
GSS and validate the corresponding design choices. We
evaluate on the ScanNet validation set and report the two
popular metrics: average recall (AR) and mean average best
overlap (MABO) across all classes. In addition, we also re-
port the average number of boxes of each scene.

We first examine each similarity metric and their com-
binations in Tab. 7. We first evaluate each single similarity
and report their results in the top 5 rows, where we find
size, volume, and segmentation metric to work much better
than color and fill similarity. Tab. 7 also reports the results
of different combined metrics. Combining multiple similar-
ity metrics often yields better results than using each single
similarity. The best result is achieved using the combination
of size, volume, and segmentation similarities.

In practice, we find that ensembling the results of multi-
ple runs using different similarity metrics further improves



the results as shown in Tab. 7 bottom. We provide the results
of an unsupervised version (V+F, SZ+V) and the complete
version (V+F, SZ+V+SG). Comparing these two methods,
we find that introducing segmentation similarity is benefi-
cial.

Lastly, we show per-class average best overlap (ABO)
and recall rate in Tab. 6. We find that GSS achieves high
recall rate (> 80% ) for all classes except picture (27.9%)
and door (75.2%). This is likely due to the fact that these
two objects are often embedded in the wall and hard to dif-
ferentiate.

A.3. Qualitative results

Fig. 3 illustrates several representative examples of the
generated proposals on ScanNet. From left to right, we
show the input point cloud, the detected shapes, GSS com-
puted proposals, and the ground-truth boxes. We show all
the GSS computed proposals in the top 3 rows where we ob-
serve that the computed proposals are mainly around each
object in the scene. In the bottom four rows, we show
the best overlapping proposals with ground-truth bounding
boxes. GSS generates proposals with great recall, and gen-
eralizes well to various object classes and complex scenes.

B. Shape detection

In this paper, we detect geometric shapes for two rea-
sons: to be used in the local smoothness loss for segmen-
tation (Eq. (7)), and as input to the GSS algorithm (Ap-
pendix A). As introduced in the main paper § 3.3, we adopt
a region-growing algorithm [22, 26] for detecting primitive
shapes (e.g., planes). The basic idea is to iteratively detect
shapes by growing regions from seed points. Specifically,
we first choose a seed point and find its neighbors in the
point cloud. These neighbors are added to the region if they
satisfy the region requirements (e.g., on the same plane),
and hence the region grows. We then repeat the procedure
for all the points in the region until no neighbor points meet
the requirements. In the latter case we start a new region.
Region-growing out-performs the popular RANSAC-based
methods [38] because 1) it is deterministic; 2) it performs
better in the presence of large scenes with fine-grained de-
tails; 3) it has higher shape detection recall. Even though it
runs slower, we use it as a pre-processing step which won’t
influence the training speed.

In practice, we use the efficient implementation
of The Computational Geometry Algorithms Library
(CGAL) [26]. We set the search space to be the 12 nearest
neighbors, the maximum distance from the furthest point to
a plane to be 12, the maximum accepted angle between a
point’s normal and the normal of a plane to be 20 degree,
and the minimum region size to be 50 points. We refer the
reader to CGAL documents [26] for more details.
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Representative visualization of the detected planes are
provided in Fig. 6 second column from left. The algorithm
detects big planes (e.g., floor, table top, wall) with great ac-
curacy and doesn’t over segment these regions into small
pieces. This is particularly useful for WyPR as the local
smoothness loss will enforce the segmentation module to
predict consistently within these shapes. For complex ob-
jects (e.g., curtain, chair, and bookshelf), this algorithm seg-
ments the object regions into small shapes. Such primitive
shapes will be used during the proposal generation algo-
rithm GSS to infer the 3D bounding boxes of all objects in
the scene.

C. Additional implementation details

In this section, we provide additional implementation de-
tails.

C.1. Geometric transformations

We apply geometric transformations in two places: 1) as
data-augmentation; 2) for computing cross-transformation
consistency losses (Eq. (5) and Eq. (11)) for both tasks.

To augment the input, we first randomly sub-sample
40,000 points as input in each training iteration. We then
randomly flip the points in both horizontal and vertical di-
rections with probability 0.5, and randomly rotate them
around the upright-axis with [—5, 5] degree. Note that af-
ter data augmentation, we only get one point cloud P as
input.

To compute the consistency losses, we further transform
the input point cloud using random flipping of both horizon-
tal and vertical directions with probability 0.5, larger ran-
dom rotation of [0, 30] degrees around the upright-axis, ran-
dom scaling by a factor within [0.8, 1.2], and point dropout
(p = 0.1). We denote the resulting point cloud as P, which

will be used when computing £G3" and LG3".

C.2. Backbone

We adopt a PointNet++ network as backbone, which has
four set abstraction (SA) layers and two feature propagation
(FP) layers. For a fair comparison we use the same back-
bone network as Qi et al. [29]. The input to the backbone is
a fix-sized point cloud where we randomly sample 40,000
points from the original scans. The outputs of the backbone
network are geometric representations of 1024 points with
dimension 3+256 (XYZ+feature dimension).

C.3. Segmentation module

The segmentation module contains two feature propaga-
tion (FP) layers which upsample the geometric representa-
tions of 1024 points to 2048 and then 40,000 points with
the same dimension (3+256) as before. We then use a two-
layer MLP with dimension [256, C] as the classifier where



metric | cabinet bed chair sofa table door shelf desk curtain fridge toilet sink bathtub
Wi | 464 1.58 1.29 194 1.65 5.74 3.17 192 578 1.68 155 129 193
oLw | 5.81 045 053 054 1.02 3.78 2.07 091 358 1.16 0.39 026 042
ik 1.49 212 1.16 2.36 3.04 0.61 1.22 228 140 0.65 1.08 2.14 3.18
Olh 1.01 095 098 0.57 3.72 0.69 1.11 1.65 134 0.19 056 0.89 1.67

Table 8: Prior statistics for each class.

C represents the number of classes. The segmentation mod-
ule outputs a dense semantic prediction for each point in the
point cloud.

C.4. Detection module

The detection module first applies a Rol pooling by
average-pooling the features of all points within each Rol.
The computed Rol features are then fed into three fully-
connected layers to get the classification S5, objectness
Sobj» and final classification logits Sy respectively.

C.5. Losses

For computing the smoothness regularization Lgyoom in
Eq. (7), enumerating all the detected planes in each training
iteration is time-consuming and not necessary. We thus ran-
domly sample 10 planes in each iteration, as we find 10 to
be the sweet spot balancing training speed and performance.
For computing the self-training losses LS5 and L35, we

set the threshold p; in Alg. 1 to be 0.1, and p» in Alg. 2 to
be 0.15. The threshold 7 in Alg. 2 is set to 0.25.

D. External prior

WyPR can be further improved by integrating external
object priors as shown in Tab. 2 and Tab. 3. We mainly
introduce two types of priors as they can be easily computed
from external synthetic datasets [6, 57]: the shape prior and
the location prior.

For the shape prior, we compute the mean aspect ra-
tio between an object’s 3D bounding box length to height
(15.,), and length to width (uf,,,) for class ¢ € {1,--- ,C}.
Since objects can be of arbitrary pose in 3D space, we
set length and width to measure the longer and shorter
edge in the XY plane. We also compute the correspond-
ing standard deviations oy, and o7, ;. To use it, we reject
proposals whose aspect ratios don’t fall within the range
[iu‘lczh - 2Ulczh7 :u’lczh + 2O.lczh] and [:u“lc:w - 2Ulczw7 lUJlC:w + 2O'lczw}
for any class ¢ € {1,--- ,C'}. We also reject pseudo bound-
ing boxes of ground-truth class ¢ (R*[¢] in Alg. 2) whose
aspect ratios don’t fall in [uf,, — 207, 1f,;, + 207,] and
(S — 20F s 50w + 207.,,]. The computed statistics of
each class are shown in Tab. 8. There are certain classes
that are missing from the external synthetic datasets [0, 57]
such as shower curtain, window, counter, and picture. For
these classes, we use the prior of other objects with similar
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shapes as a replacement. For example, we use the prior of
curtain for shower curtain, table for counter, door for win-
dow and picture.

The location prior is only applied to the floor class. This
prior is of vital importance as floor appears in almost every
scene. It becomes a hard class for semantic segmentation as
the MIL loss rarely sees any negative examples. Besides, a
great portion of points in each scene belongs to the floor. We
estimate the floor height as the 1% percentile of all points’
heights following Qi ef al. [29]. We force all the points
below floor height to be floor. All the points above this
height cannot be floor.

E. Per-class segmentation results

In Tab. 9, we report the per-class IoU on ScanNet. These
results are consistent with Tab. 2 in main paper. Compared
to prior methods PCAM [53] and MPRM [53], WyPR sig-
nificantly out-performs them, and greatly improves the per-
formance of some hard classes such as door, counter, and
fridge.

F. Additional qualitative results

In Fig. 7, we show the qualitative comparison between
ground-truth labels and our (WyPR+prior) prediction. In
each row we show the results of both tasks for one scene.
We find that WyPR segments and detects certain classes (ta-
ble in row (a, f), chair in rows (a, b, f), sofa in row (b),
bookshelf in row (c, f)) with great accuracy. WyPR also
learns to recognize some uncommon objects of the dataset
such as and sink in row (d). Moreover, we observe
that predicted segmentation mask and bounding boxes are
highly consistent, which reflects the effectiveness of the
joint-training framework.

Common failure cases for WyPR are partially observed
objects (row (b): the window on the left side), ambiguous
objects (row (a): picture and wall; row (b, f): sofa and left-
most chair). When multiple objects of the same classes are
spatially close, WyPR often cannot differentiate them and
only predicts one big boxes covering everything (row (a):
tow chair on the left side).



Methods |eval.|wall floor cabinet bed chair sofa table door window shelf picture counter desk curtain fridge sc* toilet sink bathtub otherjmloU
PCAM [53]|train|54.9 48.3 14.1 34.732945326.1 0.6 33 465 06 60 74 269 00 6.1 223 82 520 6.1|22.1
MPRM [53]|train|47.3 41.1 104 43.225243.121.5 9.8 123 450 9.0 139 21.1 409 1.8 294143 92 399 10.0(244

WyPR  |train|59.331.5 64 58331.647.518.317.9 36.7 34.1 62 361 243 67.2 8.7 38.017.9 289 359 8.2 30.7
MIL-seg | val |36.436.1 13.5 37.925.1314 9.6 183 19.8 33.1 7.9 203 21.7 325 64 140 79 147 194 85207
WyPR | val |58.1339 5.6 56.629.145519.3152 342 33.7 68 333 22.1 656 6.6 36.318.6245 39.8 6.629.6
WyPR+prior| val [52.077.1 6.6 54.3 35.240.929.6 9.3 287 333 48 266 279 694 81 27924.1254 323 8.7 |311

=

Table 9: 3D semantic segmentation on ScanNet. WyPR outperforms standard baselines and existing state-of-the-art [53] by a margin.
Here sc* refers to the ‘shower curtain’ class.
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Point cloud Detected shapes Proposals Ground-truth

Figure 6: Visualization of the computed proposals. Top three rows show all the computed 3D proposals, from which we observe that
the proposals are mainly around object areas. The bottom four rows show the proposals which best overlap with ground-truth boxes. GSS
generates 3D proposals with great recall for various objects in complex scenes.
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floor wall @8 sofa @B door bed @@ sink desk

@ bookshelf @ chair @8 toilet @ table curtain window

GT det. Pred det. GT seg. Pred seg.

Figure 7: Additional qualitative results. We show the qualitative comparison between ground-truth labels and our (WyPR+prior) predic-
tions. We show both detection and segmentation results for the same scene.
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