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Abstract

The following items are contained in the supplementary
material:

1. Proof of Theorem 1.
2. Further understanding of DeamNet.
3. Analysis of original scheme.
4. More results about original scheme and optimized

scheme.
5. Dual weighting tensors vs. single weighting tensor.
6. Differences among DeamNet and existing denoising

networks.
7. Compared with neural architecture search based

method.
8. Parameter number.
9. More qualitative results.

A. Proof of Theorem 1
Proof. To facilitate the derivation, we introduce some auxil-
iary variables. Let Y = T (y) ∈ Rn·m be the initial feature
tensor of the noisy observation y ∈ Rn, X = T (x) ∈
Rn·m be the corresponding feature tensor of the ground-
truth image x ∈ Rn. Since Ψ(x|y,T ) = ‖Y − X‖22, and
J ?

ACP(x|T ,K ,Λ) = ‖Λ(X −K (Xk))‖22, the ACP-driven
denoising algorithm can be rewritten as the following opti-
mization problem about X :

X̂ = arg min
X
‖Y − X‖22 + λ‖Λ(X −K (Xk))‖22, (1)

where the operators or parameters {T (·),K (·),Λ, λ} are
preset and y is the known noisy observation. Therefore,
{T (·),K (·),Λ, λ,y} are fixed during the optimization
process and x is the only unknown variable that needs to
be estimated. x can be obtained by applying the reconstruc-
tion operator L (·) to X̂ .

Since Eq. (1) is a quadratic optimization problem, we
can easily get the closed-form solution via gradient-based
method. The gradient of Eq. (1) can be written as follows:

L(X ) = 2(X − Y) + 2λΛTΛ(X −K (Xk)). (2)

By constraining the derivative L(X ) of Eq. (1) to 0, we
can obtain that

(I + λΛTΛ)X = Y + λΛTΛK (Xk). (3)

Because Λ = D(a1, ..., al, ..., anm) ∈ Rnm×nm is a
diagonal reliability matrix, i.e., ΛT = Λ, we have

(λΛTΛ)T = λ(ΛTΛ)T = λΛTΛ. (4)

According to Eq. (4), λΛTΛ is also a diagonal matrix.
We can easily get that

λΛTΛ = D(λa21, ..., λa
2
l , ..., λa

2
nm). (5)

Similarly,

(I + λΛTΛ)T = IT + (λΛTΛ)T = I + λΛTΛ. (6)

According to Eq. (6), I + λΛTΛ is also a diagonal ma-
trix. We can easily get that

I + λΛTΛ = D(1 + λa21, ..., 1 + λa2l , ..., 1 + λa2nm). (7)

Because (1 + λa2l ) > 0 holds true for arbitrary l-s, we
have

|I + λΛTΛ| =
nm∏
l=1

(1 + λa2l ) 6= 0, (8)

and thus I + λΛTΛ is an invertible matrix. We can get

(I + λΛTΛ)−1

=(D(1 + λa21, ..., 1 + λa2l , ..., 1 + λa2nm))−1

=D((1 + λa21)−1, ..., (1 + λa2l )−1, ..., (1 + λa2nm)−1).

(9)

Thus, we can easily obtain the following pixelwise itera-
tive equation:

[Xk+1, l] =
[Y, l] + λa2l [K (Xk), l]

1 + λa2l
= βl[Y, l] + (1− βl)[K (Xk), l],

(10)



where [·, l] represents the l-th element of a tensor, and βl =
1/(1 + λa2l ) ∈ (0, 1). Eq. (10) can be further written into
a dual tensor form as

Xk+1 = β ⊗ Y + (1− β)⊗K (Xk) (11)

By using Y = T (y), X = T (x), and x = L (X ), we
can get the final estimate as

xk+1 = L (β ⊗T (y) + (1− β)⊗K (T (xk))). (12)

�

B. Further Understanding of DeamNet
Since our DeamNet is the deep unfolding implemen-

tation of the proposed ACP-driven denoising problem, its
mathematical explanation has been provided. In this sub-
section, we will illustrate the effectiveness of DeamNet
from the perspective of deep network architecture. 1) The
progressive strategy of DeamNet decrease the gap between
the estimated clean image and the ground-truth image step-
by-step, which reduces the difficulty of image noise re-
moval; 2) the high-dimensional FD module enables Deam-
Net to transform the original noisy space to a certain FD
space, which can better reconstruct high-frequency detail-
s. In fact, by regarding the reconstruction error as certain
noise, this simple trick can also make the network more
useful for other IR applications, e.g., image deblocking;
3) compared with the pixel domain, the high-dimensional
FD can also improve the information flow transmission in a
deep network, leading to a better fitting ability; 4) in the
NLO sub-network, by using the multi-scale strategy, the
receptive field can be significantly expanded, and multi-
scale features can be obtained for a better feature prediction;
5) to allow the adaptive feature recalibration and across-
scale feature interaction for a better network expressive a-
bility, the DEAM module is introduced into the NLO sub-
network; 6) the proposed DEAM module also ensures the
availability of the low-level information in the long CNN
and recalibrates the features in each iteration stage. There-
fore, our DeamNet can lead to good denoising performance
for both synthetic and real noisy images.

C. Analysis of Original Scheme
Convergence of Original Scheme. In the original

scheme, the multi-stage loss function is used to guarantee
that the later iteration can generate better features than the
layers at previous iterations step-by-step. To analyze the
convergence of our original scheme with a multi-stage con-
straint, we report the PSNR/SSIM results of stage 1, stage 2,
stage 3, and stage 4 in Table 1. In addition, the visual results
are also provided in Fig. 1. We can find that the results are
becoming better with the increase of the stage number on

Table 1. Average PSNR (dB) and SSIM values of the reconstructed
images by each stage in the original scheme for noise level 25.
Set12, BSD68, and Urban100 datasets are tested.

Dataset Set12 BSD68 Urban100

Stage 1 30.42/0.8628 29.17/0.8290 29.98/0.8887

Stage 2 30.65/0.8679 29.32/0.8332 30.51/0.8984

Stage 3 30.75/0.8700 29.37/0.8349 30.71/0.9019

Stage 4 30.80/0.8713 29.39/0.8360 30.84/0.9042

all datasets, which verifies the convergence of the original
scheme.

Inversion Constraint between FD Module and Re-
construction Module. According to the derivation, L (·)
should be the inverse operator of T (·). This can be
achieved by adding a branch that only composed by the FD
module and the reconstruction module to the main network
architecture. In the added branch, the FD module and the
reconstruction module share the same parameters as their
counterparts in the main network architecture. Moreover,
the output of the added branch is forced to be the same as
the input of DeamNet. The loss function for the inversion
constraint is written as 1

N

∑N
g=1 η‖L (T (y(g)))−y(g)‖pp.

We will show that, by using the loss function for the in-
version constraint, the reconstruction module is an approxi-
mated inverse operator of the FD module. The experiments
are conducted on Set12, BSD68, and Urban100. The P-
SNR/SSIM results are provided in Table. 2. The visual
results of the noisy input image, the feature maps generated
by T (·), and the noisy image projected back to the pixel
domain are shown in Fig. 2. The results show that, for the
noisy input image, the output by using the cascading FD
module and the reconstruction module are very close to the
input both objectively and subjectively, which verifies the
reversible relationship between L (·) and T (·).

To better visualize the feature maps generated by the
FD module, the 16 principal feature maps from the orig-
inal 64 feature maps are provided in Fig. 2. The visual
results reveal that the feature maps focus on modelling dif-
ferent frequency components of the noisy image. The first
two feature maps reflect the main frequency components of
the image, and the noise in these two maps is much low-
er than that in the noisy input. The other maps responds
to different edge/textures of the noisy input image. Conse-
quently, our FD module can extract the hierarchical features
from the noisy image and further project them into a high-
dimensional space for better dealing with noise removal.



Figure 1. Visual results of the ‘Img 086’ image from Urban100 in each stage.

Figure 2. Visual results of the noisy input image, the generated feature maps by T (·), and the noisy output image projected back to the
pixel domain.

Table 2. Average PSNR (dB) and SSIM values of the reconstruct-
ed results by the inversion branch. Set12, BSD68, and Urban100
datasets are tested.

Datasets Set12 BSD68 Urban100

δ = 15 54.57/0.9998 54.55/0.9998 53.27/0.9997

δ = 25 54.39/0.9999 54.57/0.9998 53.19/0.9999

δ = 50 48.25/0.9999 48.28/0.9998 47.93/0.9998

D. More Results about Original Scheme and
Optimized Scheme

The original scheme uses both the inversion constraint
and the multi-stage constraint in the loss function of Deam-
Net. In this subsection, we will provide more results to
show that the optimized scheme can achieve slightly better
performance than the original version.

The results of using the original scheme and the opti-
mized version are provided in Table 3. The experimental
results show that the optimized scheme indeed obtains s-
lightly better performance. This is because the optimized
scheme has more freedom in training than the original one,
which may lead to better fitting ability. In addition, by con-

Table 3. Average PSNR (dB) and SSIM values by using the o-
riginal scheme and the optimized scheme on Set12, BSD68, and
Urban100 for noise level 25.

Scheme Original Scheme Optimized Scheme

Set12 30.80/0.8713 30.81/0.8717

BSD68 29.39/0.8360 29.44/0.8373

Urban100 30.84/0.9042 30.85/0.9048

straining L (·) be the inverse operator of T (·) in the orig-
inal scheme may make the network more difficult to train.
Therefore, we adopt the optimized scheme as the default
scheme in our implementation.

E. Dual Weighting Tensors vs. Single Weight-
ing Tensor

According to the analysis in our paper, the derived
DEAM module can be deemed as a novel attention mod-
ule. To further prove its effectiveness, we compare the dual
version to the non-dual version. Specifically, in the DEAM
module, dual weighting tensors (α1 and α2) are used for the
coarse-level feature and the high-level feature, respectively.
To evaluate the effect of dual weighting tensors, we remove



Table 4. Average PSNR (dB) and SSIM values of using DEAM
and SEAM in DeamNet on Set12, BSD68, and Urban100 for noise
level 25.

DeamNet Variants with SEAM with DEAM

Set12 30.73/0.8703 30.81/0.8717

BSD68 29.40/0.8360 29.44/0.8373

Urban100 30.75/0.9028 30.85/0.9048

α1 from DEAM, and only the single weighting tensor α2

is used for the high-level feature (denote it as SEAM, i.e.,
single element-wise attention mechanism). Table 4 shows
that by using dual weighting tensors, higher PSNR/SSIM
values can be obtained on all the testing datasets including
Set12, BSD68, and Urban100, which verifies the superior-
ity of using the dual weighting tensors in DEAM over the
single weighting tensor.

F. Differences among DeamNet and Existing
Denoising Networks

The intuitions of the network design between our Deam-
Net and the existing networks (e.g., DnCNN [61], FFDNet
[62], TNRD [9], RED [34], MemNet [47], UNLNet [28],
N3Net [41], FOCNet [22], DPDNN [13], CFSNet [53], AD-
Net [49], BRDNet [50], RIDNet [3], CBDNet [10], VDN
[59], and AINDNet [24], etc.) are quite different. Take
some networks as examples to illustrate their differences.
In our method, a novel image prior, i.e., ACP, is first de-
fined and then exploited to regularize the process of de-
noising, leading to a model-based method (i.e., the ACP
constraint-based denoising method). The network architec-
ture of DeamNet is designed by following the inference pro-
cess of the proposed model-based method. Among all these
previous networks, TNRD [9], FOCNet [22], UNLNet [28],
VDN [59], and DPDNN [13], belong to the deep unfolding-
based methods. However, the mathematical foundation of
DeamNet (i.e., the proposed ACP-driven optimization al-
gorithm) is quite different from these existing networks.
For example, TNRD [9] implements the iterative nonlin-
ear reaction diffusion method as a network; the architecture
of FOCNet [22] is based on the fractional optimal control
theory; UNLNet [28] is based on the non-local variation-
al operator; VDN [59] is based on the variational infer-
ence method, which integrates both noise estimation and
image denoising into a unique framework; the architecture
of DPDNN [13] is derived from the half quadratic split-
ting method and the plug-and-play framework. In addition,
these previous deep unfolding-based networks perform de-
noising in the pixel domain, while our DeamNet perform-
s denoising in a high-dimensional feature domain. Other
deep denosing networks(e.g. DnCNN [61], FFDNet [62],

Table 5. Denoising performance (PSNR (dB) and SSIM values) on
Set12 and BSD68 with the noise level of 50.

Dataset CLEARER DeamNet CLEARER-P DeamNet-P

Set12 27.43/0.8021 27.74/0.8057 28.08/0.8129 28.41/0.8232

BSD68 26.31/0.7352 26.54/0.7368 27.25/0.7681 27.55/0.7757

RED [34], MemNet [47], CFSNet [53], ADNet [49], BRD-
Net [50], RIDNet [3], CBDNet [10], and AINDNet [24])
are non-iterative and the model-based methods are not fully
considered during their network designs. In contrast, Deam-
Net employs an iterative strategy similar to the traditional
model-based methods for minimizing the gap between the
estimated clean image and the ground-truth image step-by-
step. Some other works try to integrate some ideas from the
traditional methods into the network. For example, N3Net
[41] constructs a non-local network by introducing the k-
nearest neighbor matching operation to the neural network.
However, it dose not involve the unfolding operators and
only performs denoising in the pixel domain. Overall, our
DeamNet is different from these existing methods both in
the image prior design and the network architecture design.

G. Compared with Neural Architecture Search
(NAS)-based Method

Recently, NAS methods have attracted much attention
and outperformed the existing labor-intensive handcrafted
architectures on a few high-level vision tasks. Some meth-
ods also applied NAS to image denoising, and achieved
promising results. For example, Suganuma et al. 1 pro-
posed a convolutional autoencoder designed by the evolu-
tionary algorithm (E-CAE) for image inpainting and de-
noising. E-CAE showed that simple convolutional autoen-
coders built upon only standard network components, i.e.,
convolutional layers and skip connections, can outperform
the state-of-the-art methods which employ adversarial train-
ing and sophisticated loss functions. Later, Zhang et al.
2 proposed HiNAS (Hierarchical NAS), which exploited
NAS to automatically design effective neural network ar-
chitectures for image denoising. More recently, Gou et al.
3 presented a novel method termed as multi-sCaLe nEu-

1Masanori Suganuma, Mete Ozay, and Takayuki Okatani. Exploiting
the potential of standard convolutional autoencoders for image restoration
by evolutionary search. In International Conference on Machine Learning
(ICML), pages 4771-4780, Jul. 2018.

2Haokui Zhang, Ying Li, Hao Chen, and Chunhua Shen. Memory-
efficient hierarchical neural architecture search for image denoising, In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 3654-3663, Jun. 2020.

3Yuanbiao Gou, Boyun Li, Zitao Liu, Songfan Yang, and Xi Peng.
CLEARER: Multi-scale neural architecture search for image restoration,
In Advances in Neural Information Processing Systems (NeurIPS), pages
1690-1701, Dec. 2020.



ral ARchitecture sEarch for image Restoration (CLEAR-
ER), which is a specifically designed NAS network for
image restoration. Since CLEARER has reported the de-
noising results on Set12 and BSD68 (both E-CAE and Hi-
NAS have not reported these results), it is used for a fair
comparison. The results for the noise level 50 are listed
in Table 5. We can observe that, the results of CLEAR-
ER are 27.43dB/0.8021 on Set12 and 26.31dB/0.7352 on
BSD68. Ours are 27.74dB/0.8057 and 26.54dB/0.7368,
respectively. Gou et al. also evaluated CLEARER via
patch-wise PSNR/SSIM, denoted by CLEARER-P. Simi-
larly, our DeamNet-P is about 0.31dB/0.0080 higher than
CLEARER-P on the image patches. Therefore, the superi-
ority of our DeamNet is verified.

H. Parameter Number
The computational costs have been provided in the

‘Computational Complexity’ subsection. In this subsection,
we make a comparison of the proposed DeamNet method
with other competing approaches on their parameter num-
bers. Note that 4 stages with shared NLO sub-network pa-
rameters are used in DeamNet. The numbers of the pa-
rameter vs. the average PSNRs of different algorithms are
visualized in Figs. 3 and 4. It can be seen from these fig-
ures that RED [34], CBDNet [10], VDN [59], and AIND-
Net(TF) [24] have larger parameter numbers and lower per-
formance when compared with DeamNet. Although other
baselines have smaller parameter numbers than ours, their
PSNR/SSIM performances are much lower. Consequently,
when compared with other state-of-the-art denoising algo-
rithms, the proposed method achieves higher denoising per-
formance with a relatively small parameter number, which
demonstrates its effectiveness.

I. More Qualitative Results
In this subsection, we provide more visual results of dif-

ferent competing approaches to prove the superiority of the
proposed DeamNet method over other state-of-the-art im-
age denoising methods. In Figs. 5-7, more results on syn-
thetic noisy images are provided, and in Figs. 8-10, more
results on real noisy images are provided. We can observe
from these figures that the noise is significantly reduced
in the denoised image by DeamNet. Furthermore, image
edges and details are reconstructed well. In contrast, the
other competing methods may lead to oversmooth results,
or generate results with higher remaining image noise than
ours. These observations further verify the effectiveness of
our DeamNet for synthetic and real-world image denoising
both objectively and subjectively.

Figure 3. The numbers of parameter and average PSNR values of
different models on Urban100 with noise level 50 (synthetic noisy
images).

Figure 4. The numbers of parameter and average PSNR values of
different models on the DnD benchmark (real noisy images). The
magnified view of the ellipsoid region is provided in the rectangle
region for better comparison.



Figure 5. Visual quality comparison for ‘test039’ from BSD68 (synthetic noisy image).

Figure 6. Visual quality comparison for ‘Starfish’ from Set12 (synthetic noisy image).



Figure 7. Visual quality comparison for ‘test044’ from BSD68 (synthetic noisy image).

Figure 8. Visual quality comparison for images from DnD (real noisy images).



Figure 9. Visual quality comparison for an image from RNI15 (real noisy image).

Figure 10. Visual quality comparison for images from SIDD (real noisy images).


