
Supplementary Material
Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation

1. Implementation Details

For our backbone network we use the ResNet-IR archi-
tecture from [2] pretrained on face recognition, which accel-
erated convergence. We use a fixed StyleGAN2 generator
trained on the FFHQ [5] dataset. That is, only the pSp en-
coder network is trained on the given translation task. For
all applications, the input image resolution is 256 × 256,
where the generated 1024 × 1024 output is resized before
being fed into the loss functions. Specifically for LID, the
images are cropped around the face region and resized to
112 × 122 before being fed into the recognition network.
For training, we use the Ranger optimizer, a combination
of Rectified Adam [7] with the Lookahead technique [11],
with a constant learning rate of 0.001. Only horizontal flips
are used as augmentations. All experiments are performed
using a single NVIDIA Tesla P40 GPU.

For the StyleGAN inversion task, the λ values are set as
λ1 = 1, λ2 = 0.8, and λ3 = 0.1. For face frontalization,
we increase the weight of the LID, setting λ3 = 1 and de-
crease the L2 and LLPIPS loss functions, setting λ1 = 0.01,
λ2 = 0.8 over the inner part of the face and λ1 = 0.001,
λ2 = 0.08 elsewhere. Additionally, the constants used in
the conditional image synthesis tasks are identical to those
used in the inversion task except for the omission of the
identity loss (i.e. λ3 = 0). Finally, λ4 is set to 0.005 in all
applications except for the StyleGAN inversion task, which
does not utilize the regularization loss.

2. Dataset Details

We conduct our experiments on the CelebA-HQ
dataset [4], which contains 30,000 high-quality images. We
use a standard train-test split of the dataset, resulting in
approximately 24,000 training images. The FFHQ dataset
from [5], which contains 70,000 face images, is used for the
StyleGAN inversion and face frontalization tasks.

For the generation of real images from sketches, we con-
struct a dataset representative of hand-drawn sketches us-
ing the CelebA-HQ dataset. Given an input image, we first
apply a “pencil sketch” filter which retains most facial de-
tails of the original image while removing the remaining
noise. We then apply the sketch-simplification method by

[9], resulting in images resembling hand-drawn sketches.
The same approach is also used for generating the sketch
images on the AFHQ Cat and AFHQ Dog datasets [1].

3. Application Details
3.1. Super Resolution

In super resolution, the pSp framework is used to con-
struct high-resolution (HR) images from corresponding
low-resolution (LR) input images. PULSE [8] approaches
this task in an unsupervised manner by traversing the HR
image manifold in search of an image that downsamples to
the input LR image.

Methodology and details. We train both our model and
pix2pixHD [10] in a supervised fashion, where for each in-
put we perform random bi-cubic down-sampling of×1 (i.e.
no down-sampling), ×2,×4,×8, ×16, or ×32 and set the
original, full resolution image as the target.

Results. Figure 1 demonstrates the visual quality of the
resulting images from our method along with those of the
previous approaches. Although PULSE is able to achieve
very high-quality results due to their usage of StyleGAN to
generate images, they are unable to accurately reconstruct
the original image even when performing down-sampling of
×8 to a resolution of 32× 32. By learning a pixel-wise cor-
respondence between the LR and HR images, pix2pixHD is
able to obtain satisfying results even when down-sampled to
a resolution of 16×16 (i.e. ×16 down-sampling). However,
visually, their results appear less photo-realistic. Contrary
to these previous works, we are able to obtain high-quality
results even when down-sampling to resolutions of 16× 16
and 8×8. Finally, in Figure 1d we generate multiple outputs
for a given LR image using our multi-modal technique by
performing style-mixing with a randomly sampled w vec-
tor on layers (4-7) with an α value of 0.5. Doing so alters
medium-level styles that mainly control facial features.
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Figure 1: Comparison of super-resolution approaches with (a) ×8 down-sampling, (b) ×16 down-sampling, and (c) ×32
down-sampling on the CelebA-HQ [4] test set. (d) Multi-modal synthesis for super-resolution using pSp with style-mixing.

3.2. Inpainting

In the task of inpainting we wish to reconstruct missing
or occluded regions in a given image. Due to their local
nature, pix2pix [3] and other local-based translation meth-
ods, have shown success in tackling this problem as they
can simply propagate non-occluded regions.

Methodology and details We train both pSp and
pix2pixHD [10] in a supervised fashion, where each input
image is occluded with a symmetric triangular mask.

Results Figure 2 presents results for both our method and
pix2pixHD. As shown, due to the lack of information in
the occluded regions, pix2pixHD is unable to accurately re-
construct the original image and incurs many artifacts. In
contrast, since pSp is trained to encode images into realistic
face latents, it is able to accurately reconstruct the occluded
region, resulting in high-quality outputs with no artifacts.

3.3. Local Editing

Our framework allows for a simple approach to local im-
age editing using a trained pSp encoder where altering spe-
cific attributes of an input sketch (e.g. eyes, smile) or seg-
mentation map (e.g. hair) results in local edits of the gener-
ated images. We can further extend this and perform local
patch editing on real face images. As shown in Figure 3b,
pSp is able to seamlessly merge the desired patch into the
original image.

3.4. Face Interpolation

Given two real images one can obtain their respective la-
tent codes w1, w2 ∈ W+ by feeding the images through
our encoder. We can then naturally interpolate between
the two images by computing their intermediate latent code
w′ = αw1 + (1 − α)w2 for 0 ≤ α ≤ 1 and generate the
corresponding image using the new code w′.
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Figure 2: Image inpainting results using pSp and pix2pixHD [10] on the CelebA-HQ [4] test set.
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Figure 3: Local patch editing results using pSp on sketches (a) and real face images (b).

Figure 4: Image interpolation results using pSp on the CelebA-HQ [4] test set.
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Figure 5: Results of pSp on the AFHQ Cat and AFHQ Dog datasets [1] on super resolution, inpainting, and image generation
from sketches.



Figure 6: Additional StyleGAN inversion results using pSp on the CelebA-HQ [4] test set.



Figure 7: Additional face frontalization results using pSp on the CelebA-HQ [4] test set.
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Figure 8: Even for challenging, non-frontal face sketches, pSp is able to obtain high-quality, diverse outputs.



Figure 9: Additional results using pSp for the generation of face images from sketches on the CelebA-HQ [4] test dataset.



Figure 10: Additional results on the Helen Faces [6] dataset using our proposed segmentation-to-image method.



Figure 11: Additional results on the CelebAMask-HQ [4] test set using our proposed segmentation-to-image method.



Figure 12: Conditional image synthesis results from sketches and segmentation maps displaying the multi-modal property of
our approach.
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