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Appendix
A. Implementation details

A.1 Image Augmentations for SCRL

We use the same set of image augmentations in SimCLR
[3] and BYOL [6] except random cropping. We crop the
patch of the image with an area uniformly sampled between
20% and 100% of that of the original image as described
in Section ??. We observe that this change is not detrimen-
tal to BYOL and results in increasing the intersection area
between SCRL’s v1 and v2. Table A1 shows the image aug-
mentation parameters from BYOL [6].

A.2 PASCAL VOC Object Detection

We use Faster R-CNN [10] with ResNet-50-FPN [7, 8]. The
base learning rate is set to 0.02 and multiplied by 0.1 at
12000 and 16000 steps of training, respectively. We train a
model over 18000 steps with 16 batches.

A.3 COCO Object Detection

We use Faster R-CNN [10] and RetinaNet [9] with ResNet-
50-FPN [7, 8]. The base learning rates are set to 0.02 for
Faster R-CNN and 0.01 for RetinaNet, and multiplied by
0.1 at 60000 and 80000 steps of training, respectively. We
train a model over 90000 steps with 16 batches.

In the case of training on various downstream schedules,
we multiply the training schedule to the default setting, i.e.
milestone for 1/10 learning rate decaying step is [30000,
40000], and train a model over 45000 steps for ×0.5 LR
schedule.

A.4 COCO Instance Segmentation

We use Mask R-CNN [10] with ResNet-50-FPN [7, 8]. The
base learning rate is set to 0.02 and multiplied by 0.1 at
60000 and 80000 steps of training, respectively. We train a
model over 90000 steps with 16 batches.

*Equal contribution

augmentation parameter T1 T2

random crop probability 1.0 1.0
flip probability 0.5 0.5

color jittering probability 0.8 0.8
brightness adjustment max intensity 0.4 0.4
contrast adjustment max intensity 0.4 0.4

saturation adjustment max intensity 0.2 0.2
hue adjustment max intensity 0.1 0.1

color dropping probability 0.2 0.2
Gaussian blurring probability 1.0 0.1

solarization probability 0.0 0.2

Table A1. Parameters used to generate image augmentations [6].

A.5 COCO Keypoints Detection

We use Mask R-CNN [10] (keypoint version) with ResNet-
50-FPN [7, 8]. The base learning rate is set to 0.02 and mul-
tiplied by 0.1 at 60000 and 80000 steps of training, respec-
tively. We train a model over 90000 steps with 16 batches.

A.6 Cityscapes Instance Segmentation

We use Mask R-CNN [10] with ResNet-50-FPN [7, 8]. The
base learning rate is set to 0.01 and multiplied by 0.1 at
18000 steps of training. We train a model over 24000 steps
with 8 batches.

B. Representation Quality of FPN Evaluated under
RoI Linear Protocol

We conduct the RoI linear evaluation with the ResNet-
50-FPN backbone, that is pretrained on ImageNet, and ver-
ify the correlation between the RoI evaluation accuracy
and the object detection AP after being fine-tuned on the
downstream task. For downstream object detection, we use
the Faster R-CNN method with ResNet-50-FPN on COCO
dataset. To make the representation for RoI evaluation
compatible with FPN architecture, we concatenate the RoI-
aligned features from every stage of the feature pyramid and
feed it to a linear head as usual. Note that we use mini-
batch statistics for batch normalization layers during the
training of the linear head in order to adapt to the statistics
of COCO dataset, while simultaneously tracking running
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upstream
AP on COCO
downstream

RoI evaluation acc.
after downstream

random 29.77 68.52
supervised-IN 38.52 79.20

MoCo-v2 37.12 77.04
SimCLR-v2 38.14 77.67

SeLa-v2 37.75 80.55
DeepCluster-v2 37.97 80.61

SwAV 39.58 81.98
BYOL 39.98 81.34
SCRL 40.94 82.39

Table A2. The correlation between RoI evaluation accuracy and
AP after being fine-tuned on the downstream task.
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Figure A1. The correlation between two types of linear evaluation
after upstream and the actual downstream performance using the
initial representation. The proposed RoI evaluation (blue) shows
higher positive correlation than the standard linear evaluation pro-
tocol (orange). Each point corresponds to different upstream meth-
ods with various upstream schedules. The straight line depicts lin-
ear regression result and the shaded area around it represents 95%
confidence interval.

statistics that is to be used during the test. As shown in Ta-
ble A2, a strong positive correlation (Pearson’s coefficient
is 0.97) between the two columns is observed. This justifies
our assumption on our protocol with which we can measure
the quality of representation without direct access to object
detection downstream task.

C. The Correlation between Linear Evaluation Pro-
tocols and the Downstream Performance

In this section, we further discuss how the proposed and
the standard linear evaluation protocols are correlated to the
actual downstream performance with a wider range of ex-

upstream dataset pretrain AP AP50 AP75

COCO
BYOL 35.4 55.6 38.0
SCRL 39.0 60.1 42.4

Table A3. COCO detection using Faster R-CNN, ResNet-50-FPN.
Upstreams are trained with the unlabeled COCO dataset with 2000
epochs.

amples. Specifically, we use SeLa-v2 [2], DeepCluster-v2
[2], SimCLR-v2 [4], MoCo-v2 [5], SwAV [2], BYOL [6],
and our method, SCRL, with varied upstream epochs and
ablated optional techniques such as multicrop in SwAV or
box generation details in SCRL. In the case of other base-
lines, publicly available checkpoints provided by the au-
thors are used. For upstream, ResNet-50 backbone is pre-
trained on ImageNet with different methods and, for down-
stream, Faster R-CNN with additional FPN is fine-tuned on
COCO detection task. We apply the same treatment as de-
scribed in Section B for batch normalization layers during
RoI evaluation.

As shown in Figure A1, the proposed protocol, RoI eval-
uation shows a significantly higher correlation to the down-
stream performance and, in addition, Pearson correlation
of our protocol (0.85) is 20× higher than the one of the
standard image classification protocol on ImageNet (0.04).
Based on this observation, we suggest that one can use our
protocol to measure transferability to the object detection
during upstream under self-supervision, in an online man-
ner, without access to the actual downstream validation.

D. Upstream training with COCO dataset

We train the model on upstream task using unlabeled
COCO train2017 for the number of steps that corre-
spond to 200 epochs on ImageNet. Then, we fine-tune it on
COCO detection task with 1× training schedule and obtain
39.0 AP, which is 3.6 points higher than BYOL as shown in
Table A3.

E. Downstream training with Sparse R-CNN

We perform COCO detection task with Sparse R-
CNN [11] that does not use predefined anchors and non-
maximum suppression (NMS) through the bipartite match-
ing, similar to DETR [1]. As with other experiments we
compared in the paper, SCRL outperforms the supervised
ImageNet pre-trained counterpart on Sparse R-CNN. This
experiment shows that our SCRL can be applicable to any
other detection frameworks to boost the performance with-
out additional training cost and efforts.

F. Additional Qualitative Analysis

Figure A2 illustrates the detected boxes with correct
class prediction, where the triplet-pair of each image rep-
resents the results from the model having been initialized
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Figure A2. Qualitative comparison among ImageNet (left), BYOL (middle) and SCRL (right) on PASCAL VOC detection w/ Faster
R-CNN, ResNet-50-FPN.
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Figure A3. Randomly generated boxes from two augmented views. In two augmented views, two rectangular regions of the same color are
spatially matched.

method pretrain AP AP50 AP75

Sparse R-CNN
supervised-IN 42.3 61.2 45.7

SCRL 44.3 63.0 48.0

Sparse R-CNN? supervised-IN 44.5 63.4 48.2
SCRL 46.7 65.7 51.1

Table A4. COCO detection using Sparse R-CNN [11], ResNet-50-
FPN. The training schedule is 36 epochs and all downstream tasks
are trained with the default hyper-parameters as in [11]. Here ? in-
dicates that the model is trained with 300 learnable proposal boxes
and random crop training augmentation, similar to Deformable
DETR [12].

learning rate pretrain AP AP50 AP75

0.45 (default) SCRL 40.9 62.5 44.5
0.3 SCRL 41.2 62.4 45.1

Table A5. Performance improvement in COCO detection task with
ResNet-50 trained for 1000 epochs, when using coarsely-tuned
learning rate of 0.3.

with ImageNet pretraining, BYOL, and SCRL, respectively.
We found BYOL tends to detect a part of the object simul-
taneously as well as the entire object. As we described
in the paper, we conjecture that these unintended conse-
quences of BYOL are caused by semantically inconsistent
matching between randomly cropped views by aggressive
augmentation. Though BYOL outperforms ImageNet pre-
trained representation on the entire test set, the shortcom-
ing observed in this qualitative analysis implies that there
still exists room for further improvement, which is exactly
where SCRL tries to fill by introducing the spatial consis-
tency. Thereby, SCRL detects the entire object solidly since
it produces position and scale-invariant features. Interest-
ingly, the bottom row in Figure A2 shows that SCRL is ro-
bust to such phenomena even though when ImageNet pre-
training generate multiple boxes in a single object.

G. Random Boxes from Two Augmented Views

Figure A3 shows randomly generated boxes from two
augmented views during the upstream training. We use
K = 3 which is the total number of generated boxes in an
image for simplicity while the main experiment generates
10 boxes (i.e. K = 10) as a default training setting.

H. Performance Improvement by Hyperparameter
Search

In all experiments in the paper, we naively transfer the
sharable hyperparameters of BYOL to SCRL with which
one can reproduce the performance reported in [6]. Al-
though SCRL already outperforms BYOL under this con-
dition, we observe an additional gain in downstream per-
formance by tuning the learning rate alone with simple grid
search, i.e. +0.3 AP increase with the learning rate of 0.3
on COCO detection task, compared to the default learning
rate, 0.45, as shown in Table A5.

I. Using Negative Pairs for Upstream Training

We exploit the negative pairs based on the SimCLR
framework and obtain somewhat better results (+0.47 AP
on COCO detection). However, this performance improve-
ment requires an increased batch size and a sophisticated
composition of the negative pairs, therefore we leave it for
future works.

J. Scale-invariant Representation Learning

Before coming up with the feature-level matching, we
had started from the baselines enforcing the input-level con-
sistency. The best model share same details with BYOL but
with the modification in the augmentation: spatially consis-
tent cropping(or just use the entire image), and random as-
pect resizing followed by mean-padding to ensure the same
spatial dimension for the sake of parallelized computation.
We observe the performance degradation on the localization
downstream task, in comparison to SCRL even with a single
RoI pair. We hypothesize that this is due to the limitation in
obtaining consistent local representation against an internal
geometric translation of an object.
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