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In this supplementary material, we provide more im-
plementation details, discussion of the proposed CGCT,
and additional experimental results. In details, we provide
the pseudo-code algorithms of the proposed CGCT and D-
CGCT in Sec. A. We highlight the key differences between
CGCT and prior works in Sec. B. The details of datasets
and implementation are provided in Sec. C and Sec. D, re-
spectively. The additional experimental results are reported
in Sec. E.

A. Algorithms
In this section we provide the pseudo-code algorithms

for the proposed CGCT (see Sec. 3.2 of the main paper) and
D-CGCT (see Sec. 3.3 of the main paper) in the Alg. 1 and
Alg. 2, respectively. Note that the adaptation stage in the
Alg. 2 can be replaced by any desired single-target domain
adaptation (STDA) method of choice, thereby, making the
proposed DCL flexible to a wide variety of STDA methods.

B. Discussion
Here we highlight the keys differences between the

CGCT and PGL [10] as well as the dual classifier-based
methods [4, 15]. The PGL [10] exploits the graph learning
framework in an episodic fashion to obtain pseudo-labels
for the unlabeled target samples, which are then used to
bootstrap the model by training on the pseudo-labeled tar-
get data. While our proposed method is similar in spirit to
the episodic training in [10], we do not solely rely on the
GCN to obtain the pseudo-labels. We conjecture that due
to the fully-connected nature of the graph and lack of tar-
get labels, the GCN will be prone to accumulate features
of dissimilar neighbours, thereby, resulting in the erroneous
label propagation. To address this peculiarity, we propose
to resort to the co-teaching paradigm, where the Gmlp is ex-
ploited to train the fedge network. As the two classifiers will
capture different aspects of training [4], it will prevent the
fedge to be trained with the same erroneous pseudo-labels
as the fnode. We validate this conjecture empirically, where

*Equal contribution
†Corresponding author

a network with a single GCN classifier with pseudo-labels
performs sub-optimally compared to CGCT (see Tab. 5 row
7 of the main paper). Finally, the dual classifier-based
methods maintain two classifiers to identify and filter ei-
ther harder target samples [15] or noisy samples [4]. Con-
trarily, we maintain Gmlp and Ggcn to provide feedback to
each other by exploiting the key observation that each clas-
sifier learns different patterns during training. Furthermore,
given the intrinsic design of the Ggcn, we also do away with
an extra adhoc loss of keeping the weights of two networks
different.

C. Datasets
Digits-five [19] is composed of five domains that are

drawn from the: i) grayscale handwritten digits MNIST [6]
(mt); ii) a coloured version of mt, called as MNIST-
M [3] (mm); iii) USPS [2] (up), which is a lower resolu-
tion, 16×16, of the handwritten digits mt; iv) a real-world
dataset of digits called SVHN [11] (sv); and v) a syntheti-
cally generated dataset Synthetic Digits [3] (sy). Following
the protocol of [1], we sub-sample 25,000 and 9,000 sam-
ples from the training and test sets of mt, mm, sv and sy and
use as train and test sets, respectively. For the up domain
we use all the 7,348 training and 1,860 and test samples, for
our experiments. All the images are re-scaled to a 28×28
resolution.

Office31 [14] is a standard visual DA dataset comprised
of three domains: Amazon, DSLR and Webcam. The
dataset consists of 31 distinct object categories with a to-
tal of 4,652 samples.

Office-Home [18] is a relatively newer DA benchmark
that is larger than Office31 and is composed of four different
visual domains: Art, Clipart, Product and Real. It consists
of 65 object categories and has 15,500 images in total.

PACS [7] is another visual DA benchmark that also con-
sists of four domains: Photo (P), Art Painting (A), Cartoon
(C) and Sketch (S). This dataset is captured from 7 object
categories and has 9,991 images in total.

DomainNet [12] is the most challenging and very large
scale DA benchmark, which has six different domains: Cli-
part (C), Infograph (I), Painting (P), Quickdraw (Q), Real



Algorithm 1: Training Procedure of Curriculum
Graph Co-Teaching (CGCT)

require: number of target domains N , classes nc
require: source dataset S; combined target dataset T
require: hyper-parameters B, τ , K,

K′, λedge, λnode, λadv
require: networks F , D, Gmlp, fedge, fnode with

parameters θ, ψ, φ, ϕ, ϕ′, respectively. The
fedge and fnode form the Ggcn.

Step 1: Pre-training on the source dataset
1 while `ce has not converged do
2 (xs,i, ys,i)Bi=1 ∼ S
3 update θ, φ by minθ,φ `

mlp
ce

4 end
Step 2: Curriculum learning

5 Ŝ0 ← S
6 Q← N . Total # curriculum steps

7 for q in (0 : Q− 1) do
. Curriculum step

Stage 1: Adaptation stage
8 for k in (1 : K) do
9 B̂qs ← (xs,i, ys,i)

B
i=1 ∼ Ŝq

10 B̂qt ← (xt,i)
B
i=1 ∼ T

11 ŷ ← softmax(Gmlp(F (x)))
12 ȳ ← softmax(Ggcn(F (x)))

13 d̂← sigmoid(D(F (x)))
14 update ψ by minψ λadv`adv
15 update θ, φ by minθ,φ `

mlp
ce − λadv`adv

16 update θ, ϕ,ϕ′ by
minθ,ϕ,ϕ′ λedge`

edge
bce + λnode`

node
ce

17 end
Stage 2: Pseudo-labeling stage

18 Dqt ← {} . Empty list

19 for xt,j ∈ T do
20 wj ← maxc∈nc p(ȳt,j = c|xt,j)
21 if wj > τ then
22 Dqt ← D

q
t ||{(xt,j , argmaxc∈nc

p(ȳt,j =
c|xt,j))} . Append

23 end
24 end
25 Ŝq+1 ← S ∪Dqt . Pseudo-source

26 end
Step 3: Fine-tuning on pseudo-source dataset

27 for k′ in (1 : K′) do
28 (xs,i, ys,i)

B
i=1 ∼ ŜQ

29 update θ, φ by minθ,φ `
mlp
ce

30 end

(R) and Sketch (S). It has around 0.6 million images, in-
cluding both train and test images, and has 345 different
object categories. We use the official training and testing
splits, as mentioned in [13], for our experiments.

Algorithm 2: Training Procedure of Domain-
aware Curriculum Graph Co-Teaching (D-CGCT)

require: number of target domains N , classes nc
require: source dataset S; target dataset T = {Tj}Nj=1

require: hyper-parameters B, τ , K,
K′, λedge, λnode, λadv

require: networks F , D, Gmlp, fedge, fnode with
parameters θ, ψ, φ, ϕ, ϕ′, respectively. The
fedge and fnode form the Ggcn.

Step 1: Pre-training on the source dataset
1 while `ce has not converged do
2 (xs,i, ys,i)Bi=1 ∼ S
3 update θ, φ by minθ,φ `

mlp
ce

4 end
Step 2: Curriculum learning

5 Ŝ0 ← S and T̂ 0 ← {Tj}Nj=1

6 Q← N . Total # curriculum steps

7 for q in (0 : Q− 1) do
. Curriculum step

8 H ← {} . Empty list

Stage 1: Domain selection stage
9 for Tj in T̂ q do

10 compute H(Tj) as in Eqn. 12
11 H ← H || H(Tj) . Append

12 end
13 Dq ← argminj H . Chosen domain

Stage 2: Adaptation stage
14 for k in (1 : K) do
15 B̂qs ← (xs,i, ys,i)

B
i=1 ∼ Ŝq

16 B̂qt ← (xt,i)
B
i=1 ∼ TDq

17 ŷ ← softmax(Gmlp(F (x)))
18 ȳ ← softmax(Ggcn(F (x)))

19 d̂← sigmoid(D(F (x)))
20 update ψ by minψ λadv`adv
21 update θ, φ by minθ,φ `

mlp
ce − λadv`adv

22 update θ, ϕ,ϕ′ by
minθ,ϕ,ϕ′ λedge`

edge
bce + λnode`

node
ce

23 end
Stage 3: Pseudo-labeling stage

24 DDq

t ← {} . Empty list

25 for xt,j ∈ TDq do
26 wj ← maxc∈nc p(ȳt,j = c|xt,j)
27 if wj > τ then
28 DDq

t ← DDq

t ||{(xt,j , argmaxc∈nc
p(ȳt,j =

c|xt,j))} . Append

29 end
30 end
31 Ŝq+1 ← Ŝq ∪ DDq

t . Pseudo-source

32 T̂ q+1 = T̂ q \ TDq

33 end
Step 3: Fine-tuning on pseudo-source dataset

34 for k′ in (1 : K′) do
35 (xs,i, ys,i)

B
i=1 ∼ ŜQ

36 update θ, φ by minθ,φ `
mlp
ce

37 end
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(a) Photo→ rest in the PACS (a) Product→ rest in the Office-Home
Figure 1. The classification accuracy line plots with the D-CGCT using ResNet-50 as the backbone. At each indicated
training iteration in the x-axis, a new target domain (shown in brackets) is selected for adaptation.

Layer ksize, Cin, Cout,
st, pad IN/BN Non-

linearity Dropout

Feature-
extractor
Conv1 (5, 3, 32, 1, 0) IN/BN ReLU 0.2
Maxpool2d (2, -, -, 2, -) - - -
Conv2 (5, 32, 64, 1, 0) BN ReLU 0.2
Maxpool2d (2, -, -, 2, -) - - -
FC3 (-, 64*4*4, 100, -, -) BN ReLU 0.2
FC4 (-, 100, 100, -. -) BN ReLU -
Classifier
FC out (-, 100, 10, -, -) - - -
Domain-
Discriminator
D FC1 (-, 100*10, 100, -, -) - ReLU 0.5
D FC2 (-, 100, 100, -, -) - ReLU 0.5
D FC3 (-, 100, 1, -, -) - - -

Table 1. The network architecture for the baseline [8] used
in the Digits-five experiments. Kernel size (ksize); in chan-
nels (Cin); out channels (Cout); stride (st); and padding
(pad). IN stands for instance normalization. The input im-
age resolution is 28 × 28 × 3.

D. Implementation Details

General Setting. To be fairly comparable with the
state-of-the-art methods, we adopted comparable backbone
feature extractors in the corresponding experiments and
datasets. For Digits-five, we have used a small convo-
lutional network as the backbone feature extractor (see
Tab. 1), which is adapted from [1] and includes two conv
layers and two fc layers. We trained the model using a
Stochastic Gradient Descent (SGD) optimizer with an ini-
tial learning rate of 1e-3. For the rest of the datasets, we
have adoptd ResNet [5] based feature extractors. Specif-
ically, for the ablation studies on Office-Home, we have
used ResNet-18 as the backbone network. For the state-of-
the-art comparisons on Office31, PACS and Office-Home

we have used ResNet-50. For the DomainNet, we have uti-
lized ResNet-101 as used by the competitor methods. Sim-
ilarly to the Digits-five, SGD optimizer is used with an
initial learning rate of 1e-3 and is decayed exponentially.
Each curriculum step consists of K = 10, 000 training it-
erations for all the datasets, except the DomainNet, where
K = 50, 000 due to large size of the dataset. The final fine-
tuning step is trained with K ′ = 15, 000 iterations for all
datasets.

GCN architecture. We have implemented fnode net-
work with 2 conv layers followed by a Batch Normalization
(BN) layer and ReLU activation, except the final layer. The
first layer takes as input image features concatenated with
the context of the mini-batch, i.e., the aggregated features
of other images in a mini-batch (based on the affinity matrix
estimated by the fedge). The second conv layer outputs the
logits that are equal to the number of classes nc. We have
used 1x1 convolution kernels in the fnode. Similarly, we
have implemented the fedge network with 3 conv layers and
1x1 kernels, where the first two layers are followed by the
BN layers and ReLU activations, except the last. The third
conv layer has a single channel as output, thus, representing
the similarity scores between samples in a mini-batch.

E. Additional Experiments
E.1. Ablations

To explain why the step-by-step adaptation in the pro-
posed DCL better addresses the alleviation of the larger
domain-shifts in the MTDA setting, we plot the classifica-
tion accuracy with the D-CGCT in Fig. 1. As can be ob-
served from the Fig. 1 (a), for Photo → rest setting in the
PACS, when the adaptation first begins with the Art as tar-
get, the performance of the model on the unseen Cartoon
domain simultaneously improves in the first 10k iterations
(or the 1st curriculum step), despite the network not seeing
any sample from the Cartoon domain. This phenomenon



Digits-five
Setting Model mt→ mm,sv,sy,up mm→ mt,sv,sy,up sv→ mm,mt,sy,up sy→ mm,sv,mt,up up→ mm,sv,sy,mt Avg (%)

Target
Combined

Source only 26.9 56.0 67.2 73.8 36.9 52.2
ADDA [17] 43.7 55.9 40.4 66.1 34.8 48.2
DAN [9] 31.3 53.1 48.7 63.3 27.0 44.7
GTA [16] 44.6 54.5 60.3 74.5 41.3 55.0
RevGrad [3] 52.4 64.0 65.3 66.6 44.3 58.5
AMEAN [1] 56.2 65.2 67.3 71.3 47.5 61.5
CDAN [8] 53.0 76.3 65.6 81.5 56.2 66.5
CGCT 54.3 85.5 83.8 87.8 52.4 72.8

Multi-
Target

CDAN [8] 53.7 76.2 64.4 80.3 46.2 64.2
CDAN + DCL 62.0 87.8 87.8 92.3 63.2 78.6
D-CGCT 65.7 89.0 88.9 93.2 62.9 79.9

Table 2. Comparison with the state-of-the-art methods on the Digits-five. “Target Combined” indicates methods are per-
formed on one source to one combined target domain. “Multi-Target” indicates methods are performed on one source to
multi-target setting. Our proposed models are highlighted in bold.

PACS
Setting Model A→ S A→ C A→ P P→ S P→ C P→ A Avg (%)

Target Combined

MSTN [21] 70.4 71.2 96.2 55.9 49.1 70.8 68.9
ADDA [17] 65.3 68.0 96.0 48.8 47.1 67.3 65.4
CDAN [8] 56.8 61.1 95.9 55.7 53.8 49.4 62.1
CGCT 70.5 75.4 98.3 44.6 44.3 81.7 69.1

Multi-Target

CDAN [8] 75.9 81.9 95.4 51.3 61.7 65.0 71.9
HGAN [20] 72.1 78.3 97.7 70.8 62.8 78.8 76.8
CDAN + DCL 68.7 89.0 98.8 61.2 82.9 89.8 81.7
D-CGCT 84.6 90.2 99.4 76.5 82.4 88.6 87.0

Table 3. Comparison with the state-of-the-art methods on the PACS. All methods use the ResNet-50 as the backbone. “Target
Combined” indicates methods are performed on one source to one combined target domain. “Multi-Target” indicates methods
are performed on one source to multi-target setting. Our proposed models are highlighted in bold.

is even vividly noticeable in the second curriculum step,
where the performance on the unseen Sketch largely in-
creases when the Cartoon is selected for adaptation. This
in other words means that the domain-shift between the
source (Photo) and the farthest target (Sketch) has already
been considerably reduced by the time the Sketch enters the
adaptation stage (from 20k iterations on wards). Thus, we
empirically demonstrate the prime reason behind the DCL
achieving superior performance over other state-of-the-art
MTDA methods. Similar observations can also be noticed
for the Office-Home. We depict the Product→ rest setting
in the Fig. 1 (b).

E.2. Comparison with the State-of-the-Art

In this section we compare with the state-of-the-art
methods for the Digits-five and PACS. Since, the recent
work of MTDA, HGAN [20], does not report results with
all the domains available in the PACS and the DomainNet,
we additionally report the results with those selected do-

mains in this section for a fair comparison. In the Tab. 2, 3
and 4, we club the baselines into two distinct settings: tar-
get combined and multi-target. In the former setting, the
domain labels of the targets are latent, and all the target do-
mains are combined into a single target domain. Whereas
in the latter, each target domain is treated separately. For
both the settings, we just train one single model for a given
source→ rest, as in HGAN [20].

In the Tab. 2, we report the state-of-the-art comparison
on the Digits-five. For a fair comparison, we compare with
the baselines reported in [1] that use a backbone network
similar to the one described in the Tab. 1. In both the target
combined and multi-target settings, our proposed methods
outperform all other baselines. For the PACS, reported in
the Tab. 3, we notice that domain labels is very vital for
mitigating multiple domain-shifts. For example, CDAN in
the multi-target setting performs 9.8% better than its target
combined counterpart. Similar trend can also be observed
between our CGCT and D-CGCT, with the D-CGCT out-



DomainNet
Setting Model R→ S R→ C R→ I R→ P P→ S P→ R P→ C P→ I Avg (%)

Target Combined

MSTN [21] 31.4 40.2 14.9 40.5 31.5 48.3 32.2 13.0 31.5
ADDA [17] 27.5 33.9 12.7 35.0 26.2 41.7 26.9 10.7 26.8
CDAN [8] 40.8 52.7 21.5 48.7 37.8 57.8 44.1 17.7 40.1
CGCT 48.9 60.3 26.9 57.1 43.4 58.8 48.5 21.7 45.7

Multi-Target

CDAN [8] 40.7 51.9 22.5 49.0 39.6 57.9 44.6 18.4 40.6
HGAN [20] 34.3 43.2 17.8 43.4 35.7 52.3 35.9 15.6 34.7
CDAN + DCL 45.2 58.0 23.7 54.0 45.0 61.5 50.7 20.3 44.8
D-CGCT 48.4 59.6 25.3 55.6 45.3 58.2 51.0 21.7 45.6

Table 4. Comparison with the state-of-the-art methods on the DomainNet. All methods use the ResNet-101 as the backbone.
“Target Combined” indicates methods are performed on one source to one combined target domain. “Multi-Target” indicates
methods are performed on one source to multi-target setting. Our proposed models are highlighted in bold.

(a) CDAN [8] (b) CDAN (w/ domain labels) (c) CGCT (d) D-CGCT

Figure 2. t-SNE plots of the feature embeddings for the Product→ rest of the Office-Home. All the models use ResNet-50
as backbone. Each colour indicates a different domain.

(a) CDAN [8] (b) CDAN (w/ domain labels) (c) CGCT (d) D-CGCT

Figure 3. t-SNE plots of the feature embeddings for the Product → rest of the Office-Home depicting only 10 randomly
sampled classes. All the methods use ResNet-50 as backbone. Each colour indicates a different class while each shape
represents a different domain.

performing the former by a large margin. Finally, we re-
evaluate our methods on the 5 domains of the DomainNet,
by leaving out the Quickdraw domain as in [20]. Results are
reported in the Tab. 4. We produce state-of-the-art perfor-
mance in the DomainNet for both the settings by non-trivial
margins. This further shows that our proposed feature ag-
gregation and training strategy are much more effective than
the HGAN.

E.3. Visualization

In this section we visualize the features learned by our
models and compare them with the baseline methods. The
Fig. 2 depicts the t-SNE plots of the feature embeddings
computed by feature extractor network (ResNet-50) for the
direction Product→ rest of the Office-Home. The plots in
the Fig. 2 (c) and (d) demonstrate that the proposed CGCT
and D-CGCT result in well clustered and discriminative fea-
tures compared to CDAN baselines (see Fig. 2 (a) and (b)).



To better visualize the decision boundaries in the latent fea-
ture space, we select 10 classes, randomly from the Office-
Home, and depict the t-SNE plots of the feature embeddings
in the Fig. 3. It is can be seen that our models learn features
that can be easily separated by a linear classifier, much eas-
ier than the CDAN models. In particular, the CDAN when
using domain labels (see Fig. 3 (b)) produces more over-
lapping classes than our D-CGCT (see Fig. 3 (d)). Thus,
when the domain labels are leveraged with our DCL strat-
egy, the model produces features that are more discrimi-
native, thereby leading to an improved performance in the
MTDA.
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