
Appendix
Errata: In Figure 1, Event 2 Arg2 should be “man with

trident” instead of “main with trident”.
Appendix provides details on:

1. A Brief Summary of Semantic Roles, and their usage
in our paper.

2. Details on Dataset Curation and Annotation Interface
3. Additional Dataset Statistics
4. Additional Implementation Details
5. Details on Lea-Soft along with Tables with All Metrics
6. DataSheet [18] for VidSitu
7. Qualitative Analysis of Data (this is attached as a video

file in the zip folder).

A. Semantic Roles: A Brief Summary
Semantic Role Labeling attempts to abstract out at a

high-level who does what to whom [66]. It is a popular nat-
ural language task which attempts at obtaining such struc-
tured outputs from natural language descriptions. As such
there are multiple sources to obtain semantic roles such as
FrameNet [4], PropBank [54] and VerbNet [7]. Prior work
on situation recognition in images (ImSitu) [83] have cu-
rated list of verbs (situations) from FrameNet, and action
recognition dataset (Moments in Time) [51] have curated
action vocabulary from VerbNet. However, we qualitatively
found both vocabulary to be insufficient to represent ac-
tions, and thus chose PropBank which contained action-
oriented verbs. As such, PropBank has been used for video
object grounding [61] but not in the context of collecting
semantic roles from visual data.

PropBank contains a set of numbered semantic roles for
each verb ranging from Arg0 to Arg4. Each numbered argu-
ment has a specific definition for a particular verb but some
themes are similar across verbs (adapted from PropBank an-
notation guidelines [6]3). For the verb “throw”:

• Arg0: Agent – object performing the action. For e.g.
“person”

• Arg1: Patient – object on which action is performed.
For e.g. “ball”

• Arg2: Instrument, Benefactive, Attribute. For e.g. “to-
wards a basket”

• Arg3: Starting Point
• Arg4: Ending Point
• ArgM: Modifier – location (LOC), manner(MNR), di-

rection (DIR), Purpose (PRP), Goal (GOL), Temopral
(TMP), Adverb (ADV)

3http://clear.colorado.edu/compsem/documents/
propbank_guidelines.pdf

In general, we noticed that Arg3 and Arg4 were exceed-
ingly rare for visual verbs, thus we restrict our attention to
Arg0, Arg1, Arg2 for numbered arguments. For modifier ar-
guments, we found Location (LOC) to be universally valid
for all video segments. Thus, for those verbs where LOC
doesn’t apply usually, we additionally add a semantic role
“Scene” which refers to “where” the event takes place (such
as “living room”, “near a lake”). Other arguments were cho-
sen based on their appearance in MPIID dataset, and we
most commonly used Manner (which suggests “how” the
action takes place) and Direction (details in the Section B).
For rest of the paper, we use ALoc, ADir, AMnr, and AScn
to denote location, direction, manner and scene arguments
respectively.

B. Dataset Collection
In this section we describe details on dataset collection

including curation of verbs and arguments, followed by
details on annotation interface, quality control and reward
structure.

B.1. Dataset Curation
We provide more details on Dataset Curation which were

omitted from Section 4.1 of the main paper.
Video Source Selection. As suggested in the Section

4.1 we aimed at a domain with two criterion: the videos
should be by themselves cover diverse situations (“climb”
verb should not just be associated with rocks or mountains,
but also things like top of a car), and that the each video
should contain complex situation (the video shouldn’t de-
pict someone doing the same task over extended period
of time, which would lower chances of finding meaning-
ful event relations and be repetitive in verbs and arguments
over the entire video).

After a brief qualitative analysis, we found instruction
domain videos (HowTo100M [50], YouCookII [90], COIN
[69]) to have very fine-grained actions with less diversity
and less complexity within small segments, open domain
sources (ActivityNet [24], Moments in Time [51], Kinetics
[31], HACS[87]) to be somewhat diverse but low complex-
ity within a small segment. This led us to Movie domain
which span multiple genres leading to appreciable diversity
as well as complexity.

We converged on using MovieClips [3] rather than other
movie sources such as MPII [60], since MovieClips al-
ready provide one-stage of filtering to provide interesting
videos. While using the same movies as used in AVA[21]
was an option, we found that the video retention was quite
low (around 20% of the movie are removed from you-
tube), and the movie contained long contiguous segments
with low complexity. We also note some other datasets
like MovieNet [28], Movie Synopsis Dataset [80], Movie
Graphs [72] do not provide movie videos and cannot be

http://clear.colorado.edu/compsem/documents/propbank_guidelines.pdf
http://clear.colorado.edu/compsem/documents/propbank_guidelines.pdf
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Figure 1: Bar graph showing number of unique verbs with
respect to the rank of the video segment as computed via our
heuristic based on predicted labels from SlowFast Network
[16] trained on AVA[21].

used for collecting annotations. One demerit of using movie
domain is that the verb distributions are skewed towards ac-
tions like “talk”, “walk”, “stare”. Despite this we find the
videos to be reasonably complex.

Video Selection. MovieClips spans a total of 1k Hours
which is far beyond what can be reasonably annotated. To
best utilize available annotation budget, we are primarily
interested in identifying video segments depicting complex
situations with a high precision while avoiding visually un-
eventful segments common in movies such as those simply
involving actors engaged in dialogue.

To avoid such segments, we use the following heuristic:
a video with more atomic actions per person is likely to be
more eventful. So, we divide all movieclips into 10 second
videos with a stride of 5 seconds, obtain human bounding
boxes from the MaskRCNN [23] object detector trained on
the MSCOCO [45] dataset, predict atomic actions for each
detected person using the SlowFast [16] activity recognition
model trained on the AVA [21] dataset, and rank all videos
by the average number of unique atomic actions per person
in the video. In particular, we discard labels such as “talk”,
“listen”, “stand” and “sit” as these atomic actions didn’t
correlate with complexity of situations. Since “action” se-
quences like “fight scenes” are favored by our ranking mea-
sure, we use simple heuristic of removing “martial arts” ac-
tions to avoid oversampling such scenes and improve diver-
sity of situations represented in the selected videos.

To confirm the usefulness of the proposed heuristic, we
conduct an experiment where we annotate 1k videos chosen
uniformly sampled across the entire dataset (as shown in
Figure 1). Reducing number of unique verbs shows the ef-
fectiveness of our heuristic and suggests at least 80K videos
segments (which translates to 27K non-overlapping video
segments) can be richly annotated.

For final video selection, we randomly choose set of
videos from the top-K ranks, such that the newly chosen
videos don’t overlap with already chosen videos, and that
no more than 3 videos are uploaded from the same Youtube
video within a particular batch.

Curating Verb Senses. To curate verb senses, we follow
a two-step process: from the initial list of ⇠ 6k verb senses

in PropBank [54], first we manually filter verb senses which
share the same lemmatized verb (as previously stated “go”
has 23 verb senses) to retain only “visual” verb senses (for
instance we remove the verb sense of “run” which refers to
running a business). We keep all 3.7K verbs with a single
verb sense and of the remaining 2364 verbs-senses (shared
across 809 verbs) we retain 629 verb senses (shared across
561 verbs). Second, to further restrict the set of verbs to
those useful for describing movies, we discard verbs that
do no appear at all in the MPII-Movie Description (MP2D)
dataset [60]. To extract verbs from the descriptions we use a
semantic-role parser [62]. This results in a final set of 2154
verb-senses.

Curating Argument Roles. Once we have curated the
verb-senses from PropBank, we aim to delegate a set of
argument roles for each verb-sense which would be filled
based on the video. While PropBank provides numbered
arguments for each verb-sense there are two issues with di-
rectly using them: first, some arguments are less relevant
for visual scenes (for instance Arg1 (utterance) for “talk” is
not visual), second, auxiliary arguments like direction and
manner are not provided (for instance direction and man-
ner for “look” are important to describe a scene). To ad-
dress this issue, we re-use the MP2D dataset to inform us
what arguments are used with the verbs. For each verb, we
choose set of 5 most frequently used argument role-set and
use their union. We also remove roles such as TMP (usually
referring to words like “now”, “then”) since temporal con-
text is implicit in our annotation structure. We also removed
roles like ADV (adverb) which were too infrequent. Finally,
we use the following modifier roles: “Manner”, “Location”,
“Direction”, “Purpose”, “Goal”, but note that “purpose” and
“goal” were restricted to a small number of verbs and hence
not considered for evaluation.

We further added the modifier role “Scene” which de-
scribes “where” the event takes place, and only applies
to verbs which don’t have “Location”. For instance,
“stand” has the argument role “location” which refers to
“where” the person is standing and doesn’t have “Scene”,
whereas “run” doesn’t contain “location” and hence con-
tains “Scene”. In general, “Scene” refers to the “place” of
the event such as “in an alleyway” or “near a beach”.

Event Relations. We started with the set of three event
relations namely: no relation (Events A and B are unre-
lated), causality (Event B is Caused By Event A i.e. B hap-
pens directly as a result of A) and contingency based (Event
B is Enabled By Event A i.e. A doesn’t directly cause B
but B couldn’t have happened without A happening first)
on prior work in cross-document event relations [26]. How-
ever, we found adding an additional case of “Reaction To”
for causality helpful to distinguish between event relations.
For instance, in the case “X punches Y” followed by “Y
falls down” would be definitely “B is Caused By A”, how-



(a) Annotation Interface at the start. First step is to 
watch the entire 10 second video. 

(b) Second step is to select a verb from drop-down list which 
shows example usage and displays slots for arguments. 

(c) Third step, is filling in argument slots for each verb and 
re-using entity names which appear in drop-down.

(d) Final step is to choose an Event Relation for Events 1,2,4,5 
with respect to Event 3

Figure 2: Illustration of our annotation interface. (a) depicts the initial screen an annotator sees. In the first step, one needs
to watch the entire 10 second video. (b) depicts the second step of choosing a verb from a drop-down which contains verb
senses obtained from PropBank. After selecting a verb, an example usage is shown along with corresponding argument roles
which need to be filled. (c) depicts filling the argument slots for each verb which can be phrases of arbitrary length. Each
filled in phrase can be re-used in a subsequent slot, to enforce co-reference of the entities. (d) shows the final step of choosing
event relations once all the arguments for all events are filled. The event relations should be classified based on causality and
contingency for Events 1,2,4,5 with respect to Event 3.

ever for the case “X punches Y” followed by “Y crouches”
it is unclear if “B is Caused By A” since Y makes a volun-
tary decision to crouch. As a result, we call this relation “B
is a Reaction To A”.

B.2. Annotation pipeline
With videos, the list of verb-sense and their roles curated,

we are now ready to crowd-source annotations on Amazon
Mechanical Turk (AMT).

Annotation Interface. Figure 2 shows screenshots de-
picting our annotation interface. For annotating a given
10 second video, the assigned worker is instructed to first

watch the entire 10-second video (Figure 2 (a)). Then for
every 2 second interval, the annotator selects a verb cor-
responding to the most salient event from our curated list
of verb-senses using a search-able drop-down menu. Once
the verb is chosen, slots for the corresponding roles are dis-
played along with an example usage (Figure 2 (b)). The
worker fills in the values for each role using free-form text
(typically a short phrase). When referring to an entity,
we instruct the worker to use phrases that uniquely iden-
tify the entity in the full 10 second video. Furthermore,
these phrases can be reused in filling semantic-roles in other
events within the video, which provides the co-reference in-



formation about the entities i.e. co-referenced entities are
maintained via exact-string match (Figure 2 (c)). Once all
verbs and their roles are annotated, we ask the worker to
label the relation of Events 1, 2, 4, and 5 with respect to
Event 3 (Figure 2 (d)). Note that the order of causality and
contingency is different for Events 4,5 compared to Events
1,2 respecting the temporal order.

Partitioning into 2-second clips: We emphasize that
splitting the video into 2-second intervals is strictly a design
choice motivated by reduction in annotation cost and con-
sistent quality of annotations. In an early version of the data
collection, we asked annotators to provide “start” and “end”
points for events and allowed overlaps (consistent with
other datasets such as ActivityNet Captions[35]). A close
analysis showed that the noise in annotations was tremen-
dous, took significantly longer (roughly 3x) and would lead
to a much smaller and lower quality dataset given a budget.
We thus simplified the task via 2-sec interval annotations
and saw large improvements in consensus and speed.

Clearly, using such a scheme leads to imprecise tempo-
ral boundaries for the events. Furthermore, it doesn’t allow
annotating hierarchical actions. However, we argue that he
downsides of this design choice are reasonably mitigated
since: (a) Longer duration events get annotated via a repeat
of the same verb across consecutive clips (we see many oc-
currences in our dataset) & (b) In the presence of multiple
verbs in a clip, the most salient one gets annotated.

The 2s duration was chosen after an analysis of ⇠50
videos showed that events typically spanned more than 1s
but clips longer than 2s often contained multiple interest-
ing events that we would not want to discard. Finally, we
note that 2-second duration choice may not be suitable for
vastly different domains (e.g. fewer actions and more talk-
ing) where 2s may be too dense, and relaxing this to longer
clips may be more efficient (annotation cost wise).

Event Relation Annotation w.r.t. Middle Event: We
note there are two alternatives to our proposed annotation
strategy for event relation which involves only annotating
only all events only with respect to middle event. First, ex-
haustively annotate all event-event relations which would
result in 10 annotations per video. Clearly, this is a 2.5⇥
the annotation (in practice it is even more challenging). As
a result, we decided to restrict to only one event relation.
Second option is to allow choosing one of the 2-second in-
tervals as the main event and annotating event relations with
respect to it. In practice, we found the choice of main event
to be subjective and inconsistent across annotations. More-
over, choosing the main event could lead to biased event re-
lations (for instance “Caused By” relation would be more
pronounced). Thus, we simplified the step by choosing
Event 3 spanning from 4-6 seconds as the main event and
annotated other events with respect to Event 3.

Worker Qualification and Quality Control. To ensure

Acc@1 Acc@5 Recall@5
10 A 20 A 10 A 20 A 10 A 20 A

Majority 0.20 0.21 0.66 0.75 0.03 0.02
Human 0.62 0.71 0.96 1.00 0.64 0.59

Table 1: 10A and 20A denote 10 and 20 annotations re-
spectively. Majority denotes choosing most frequent verbs
for the validation set.

that annotators have understood the task requirements, we
put up a qualification task where a worker has to success-
fully annotate 3 videos. These annotations are manually
verified by the first author who then provides feedback on
their annotations. To filter potential workers, we restrict to
more than 95% approval rate and having done at least 500
tasks. In total we qualified around 120 annotators, with at
least 60 workers annotating more than 30 videos every batch
of 2K videos.

In addition to manual qualification, we put automated
checks one average number of unique verbs provided within
a video, and average description lengths. We further manu-
ally inspect around 3 random samples from every annotator
after every 3K�5K videos and provide constant feedback.

Annotating Validation and Test Sets. We ran a con-
trolled experiments using 100 videos and annotated 25
verbs for each event. We report the human agreement in
Table 1. To compute human agreement score for any event,
we use one human annotation (out of 25) as a prediction and
the remaining 10 or 20 annotations as ground-truths (de-
noted by 10A or 20A). The final score is the average over all
possible prediction/ground-truth partitions. Essentially, we
find that even moving from 10 to 20 annotations, the human
agreement improves from 62% to 71% which suggests even
at higher number of annotations, we receive verbs which are
suggested by a single annotator (and hence no agreement).
This rules out metrics like accuracy, precision, or F1 scores
because they would penalize predictions that may be correct
but are not present in a reasonably sized set of ground truth
annotations. This analysis leads us to the metric Recall@5
which measures if the verbs most agreed upon by humans
are indeed recalled by the model in its top-5 predictions.

Furthermore, this prompts us to collect the annotations
for validation and test set in two-stages, in the first stage
we collect 9 additional annotations for verb and then in the
second-stage 3 annotations for argument roles and event re-
lations given the verb (we choose the set of verbs chosen by
the annotator with the highest agreement, followed by high-
est number of unique verbs within the video). We find this
two-stage process to be of similar cost of obtaining 5 inde-
pendent annotations but with the added advantage of being
comparable across annotations. In total we annotation 3789
videos for validation and test sets.



Total Caused By Reaction To Enabled By No Relation

Train Set 94016 16.94 24.05 33.76 25.25

Val Set 5304 20.99 20.29 33.82 24.88
Val Set* 4089 (77.09%) 15.3 18.95 39.05 26.66

Test Set 6392 20.19 34.88 24.44 20.4
Test Set* 4851 (75.89%) 13.39 19.04 40.9 26.5

Table 2: The distribution of Event Relations before and after
filtering by taking consensus of at least two workers i.e. we
consider only those instances where two workers agree on
the event relation when given the verb.

Reward. We set the reward for annotating one 10-
second video (for training videos) to $0.75 after estimating
the average time of completing an annotation to be around
5mins. This translates to around $9/hour. Overall, we re-
ceived generous reviews for the reward on popular turk
management website. For validation and test sets, we set
the reward to $0.2 for the first stage (collecting only verbs
from 9 annotators and $0.7 for the second-stage (collecting
argument and event relations from 3 annotators). As a re-
sult, the cost for annotating a single video in the validation
and test set turns out to be $3.9 (0.2⇥ 9+0.7⇥ 3) which is
around 5.2⇥ the cost of annotating a single training video.
Total cost for the process comes around $36.7K (note: this
doesn’t account for pilot experiments, qualifications, and
discarded annotations due to human errors).

Collection Timeline. Collecting the entire training set
was done over a period of about 1.2 months, and an addi-
tional 1 month for collecting the validation and test sets.

C. Additional Dataset Statistics
In this section we report additional dataset statistics not

included in Section 4.2 due to space constraints.
In Table 2 we report the distributions of Event Relations

before and after filtering for validation and test sets. For
filtering, we use consensus of two workers i.e. at least two
workers agree on the argument relation which we use as the
ground-truth. We largely find that the consensus on Caused
By and Reaction To is low, but Enabled By and No Rela-
tions are higher.

Next, we plot the distributions for the 100 most frequent
verbs, genres and chosen movies in Figure 3. For verbs
and genres we find Zipf’s law in action. For verbs, we find
most common verbs such as “talk”, “speak”, “walk”, “look”
which are also part of frequent atomic actions despite ex-
plicitly not scoring them. This is an inherent effect due to
the movie domain where dialogue is a large focus. For gen-
res we find that “Comedy”, “Drama”, “Action”, “Romance”
are the most frequent which tend to have more movements
than “Mystery”, “Thriller” which have less movements on
actors with often extended still-frames.

In Figure 4 we plot the top 50 most frequent words

within the argument (after removing stop-words). We find
“man”, “woman” are the most frequent word in all of Arg0,
Arg1, Arg2 which is not surprising since the movies are
human-centric. We note the over-abundance of “man” com-
pared to “woman” is an amplification of the biases present
in the movie. Interestingly, the distribution is less skewed
for Location, Direction, and Manner

D. Implementation Details
We detail some of the implementation details for our

models. All implementations are coded in PyTorch [56].
Unless otherwise mentioned we use Adam [33] optimizer
with learning rate of 1e�4.

D.1. Verb Prediction Models
All our implementations for verb prediction models such

as I3D[8], Slow-only and SlowFast networks [16] is based
on the excellent repository SlowFast [15]. We use the
checkpoints from the repository for kinetics pre-trained
models. All models are trained with a batch size of 8 for 10
epochs, and the model with best recall@5 is chosen for test-
ing. For classification, we use a set of 1560 verbs composed
two MLP projections (first projects to half the input dimen-
sion, the second to 1560 verbs) separated with a ReLU ac-
tivation. For inference, we choose the top-5 scoring verbs.
Training requires considerable GPU space, and on 8 TITAN
GPUs, with batch size of 8 each epoch takes around 1 hour,
with total being 10 hours.

D.2. Argument Prediction Models
We extract the features from underlying base networks

which is 2048 and 2304 for I3D and SlowFast respectively.
For transformers, we use the implementation provided in
Fairseq library [53] (4 and for GPT2 (medium) and Roberta
(base) we use the implementation by HuggingFace trans-
former library [78] 5. For tokenization and vocabulary, we
utilize Byte-Pair Encoding and add special argument tokens
such as [Arg0] to encode the phrases.

For both transformer encoder and decoder we use 3 lay-
ers with 8 attention heads. The decoder uses the last en-
coder layer outputs as encoder attention for subsequent de-
coding. For training, we use cross-entropy loss over the pre-
dicted sequence. For sequence generation, we use greedy-
decoding with temperature 1.0 as we didn’t find improve-
ments using beam-search or using different temperature.

For training, we used a batch size of 16 for all models
other than GPT2 for which we could only use a batch size
of 8 due to memory restrictions. Training time for GPT2
is around 10 hours over 8 GPUs (recall that GPT2 medium
has 24 transformer layers and 16 attention heads). All other

4https://github.com/pytorch/fairseq/
5https://github.com/huggingface/transformers

https://github.com/pytorch/fairseq/
https://github.com/huggingface/transformers


Figure 3: Distribution of 100 most frequent verbs (a), genre tuples (b), and movies (c). Note that for (a), the count represents
the number of events belonging to the particular verb, whereas for (b), (c) it represents the number of video segments
belonging to a particular genre or movie.



Figure 4: 50 Most frequent words (after removing stop-words) for Arg0, Arg1, Arg2, ALoc (location), ADir (direction ) and
AMnr(Manner).

models take around 15 mins per epoch with batch size of 16
on a single TITAN GPU with total time around 3 hours for
10 epochs which we found sufficient for convergence.

For computing natural language generation metrics like

ROUGE, CIDEr we use the official MSCOCO Captions im-
plementation [45] 6. For co-reference metrics, we use the

6https://github.com/tylin/coco-caption

https://github.com/tylin/coco-caption


implementation provided in coval [52] 7

E. Evaluation Metrics
In this section, we provide details on LEA as well as our

proposed LEA-soft. We further report additional metrics
such BLEU [55] and METEOR [5], and coreference met-
rics. We also report per-argument scores for the baselines.

E.1. Co-Reference Metrics
We primarily use the metric LEA [52] which is a link-

based metrics. We also note there exists other metrics such
as MUC [73], BCUBE [2], CEAFE[47]. We point the
reader to a seminal paper on visualizing these metrics [57]
for a brief overview of MUC, BCUBE and CEAFE, and
[52] for comparison of other metrics with LEA.

LEA and LEA-soft As noted in the paper [52], LEA
computes an importance score and resolution score for each
entity given as

P
ei2E imp(ei)⇥ res(ei)P

ei2E imp(ei)
(E.1)

The final score is the F1-measure computed based on re-
call (entities are ground-truths) and precision (entities are
predictions). As noted earlier, LEA doesn’t consider if the
proposed entity by itself is correct and thus even incor-
rect entity predictions could lead high co-reference score
as long as the co-referencing is correct. We address this us-
ing LEA-soft which additionally weights the importance of
each entity during precision computation with the sum of
cider scores in the numerator and len of cider scores in the
denominator.

As a result, we have

PrecLEA =

P
ei2E imp(ei)⇥ res(ei)P

ei2E imp(ei)
(E.2)

PrecLEA�soft =

P
ei2E(

P
ei
C(ei))⇥ imp(ei)⇥ res(ei)P

ei2E |ei|⇥ imp(ei)

(E.3)

where C(ei) denotes the cider score for the ith entity. We
keep the recall computation unchanged and use the modi-
fied precision to compute the final F1-Score for LEA-soft.
Since we have multiple ground-truth reference, we compute
the F1-score for each ground-truth reference individually
and average over the 3 ground-truths.

E.2. Evaluation of Arguments
We examine the cider scores for different arguments

over a set of 100 videos (same used for verb prediction

7https://github.com/ns-moosavi/coval

cider Arg0 Arg1 Arg2 ALoc AScn ADir AMnr

GPT2 0.39 0.40 0.39 0.45 0.43 0.22 0.37 0.15
Human 0.70 0.73 0.74 0.73 0.90 0.96 0.40 0.15

Table 3: CIDEr score for all collected Arguments with 5
annotations on 100 videos.

results). To compare semantic role values, which are free-
form text phrases, we compute CIDEr metric treating one
of the chosen annotations as a hypothesis and remaining
annotations as references for each argument. Table 3
compares CIDEr scores for all semantic roles and scores
by argument type for a GPT2 based language only baseline
that generates the sequence of roles and values given the
verb for an event. We find that human-agreement is high for
all arguments except direction (ADir) and manner (AMnr).
For both “direction” (ADir) and “manner” (AMnr), we find
that both language-only baseline and human agreements
are poor. On further inspection, we find that the argument
“manner” describes “how” the event took place is open to
subjective interpretation, and the argument “direction” has
a wide range of correct values (e.g. for “walk” directions
“forward”, “down the path”, and “through the trees”)
may all be correct. For a reliable evaluation, we evaluate
argument prediction performance only on arguments that
achieved high human-agreement i.e. Arg0, Arg1, Arg2,
ALoc, and AScn, and leave the evaluation of Direction and
Manner for future work.

E.3. All Metrics
We report BLEU@1, BLUE@2, METEOR, ROUGE,

and CIDEr for both val (Table 4) and test set (Table 5). For
each metric we further report macro-averaged scores across
verbs and arguments, and report per argument scores. Note
that only CIDEr is able to take advantage of the macro-
averaged scores due to its inverse document frequency re-
weighting. Finally, we report the co-reference metrics
MUC, BCUBE, CEAFE , LEA and our proposed metric
LEA-Soft.

F. VidSitu DataSheet
The seminal work datasheets for datasets [18] outlines a

list of questions to encourage transparency, accountability
and mitigate unwanted biases. Here, we provide a datasheet
for VidSitu closely following the guidelines in prior work.
For simplicity and readability, we paste the questions ver-
batim.

F.1. Motivation
• For what purpose was the dataset created? The

main motivation to create the dataset is to bridge the re-

https://github.com/ns-moosavi/coval


Model GPT2 TxDec Vid TxDec Vid TxEncDec Vid TxDec Vid TxEncDec Human
Vis Feats 7 7 SlowFast SlowFast I3D I3D

B@1 40.91 42.79 43.45 44.65 41.69 45.3 43.56
B@1-Vb 38.08 41.02 39.59 41.98 38.96 40.54 39.93
B@1-Arg 40.91 42.62 42.89 44.49 40.18 44.6 41.69

B@1-Arg0 44.67 46.32 48.26 48.14 49.58 49.36 49.71
B@1-Arg1 31.88 31.69 32.81 34.72 34.76 36.17 40.61
B@1-Arg2 34.13 36.3 34.93 35.86 35.17 37.36 39.87
B@1-ALoc 46.88 48.07 48.97 51.39 42.73 49.37 38.7
B@1-AScn 46.99 50.74 49.48 52.33 38.66 50.71 39.56

B@2 27.66 28.8 29.87 30.86 28.47 30.73 29.89
B@2-Vb 23.92 26.52 25.73 27.54 25 25.39 25.14
B@2-Arg 27.63 28.4 29.19 30.61 26.82 30.06 28.37

B@2-Arg0 31.06 32.07 34.09 33.78 35.33 34.03 34.74
B@2-Arg1 19.53 19.87 20.25 22.39 22.3 22.6 26.72
B@2-Arg2 22.1 23.52 22.22 23.46 21.81 24 26.76
B@2-ALoc 32.92 32.24 34.19 35.98 28.58 34.04 27.06
B@2-AScn 32.55 34.29 35.21 37.42 26.06 35.61 26.59

M 16.99 17.51 17.28 18.26 17.68 18.32 22.24
M-Vb 15.33 16.4 15.8 17.14 16.39 16.77 22.08
M-Arg 15.88 16.03 16.2 17.23 15.93 16.95 21.02
M-Arg0 21.12 21.97 20.99 21.46 22.23 22.05 25.21
M-Arg1 15.49 14.81 13.94 16.14 15.93 16.16 22.22
M-Arg2 14.99 16.27 15.21 15.65 14.76 14.85 20.75
M-ALoc 15.21 13 15.03 16.26 12.17 15.19 17.88
M-AScn 12.59 14.11 15.85 16.63 14.54 16.51 19.02

R 40.08 41.19 40.61 42.66 40.67 42.41 39.77
R-Vb 37.07 37.89 36.89 39.18 36.38 38.14 39.16
R-Arg 39.62 40.47 39.58 41.96 38.56 41.39 38.43
R-Arg0 44.77 46.7 46.78 47.36 48.65 47.71 45.84
R-Arg1 34.25 33.24 32.83 35.7 34.66 36.65 40.23
R-Arg2 33.72 36.14 34.12 35.13 34.71 35.85 36.43
R-ALoc 42.87 41.41 39.82 44.6 32.22 41.49 34.38
R-AScn 42.46 44.84 44.33 46.99 42.55 45.26 35.25

C 34.67 35.68 44.78 45.52 47.14 47.06 84.85
C-Vb 42.97 47.5 49.97 55.47 51.61 51.67 91.7
C-Arg 34.45 32.15 41.24 42.82 41.29 42.76 80.15
C-Arg0 28.33 32.1 41.64 34.6 48.99 39.42 88.24
C-Arg1 38.58 38.47 41.42 45.47 45.42 47.06 83.37
C-Arg2 36.82 40.51 42.28 41.02 40.19 44.52 74.82
C-ALoc 47.77 27.05 43.01 46.97 33.75 39.75 76.72
C-AScn 20.73 22.62 37.86 46.05 38.11 43.03 77.62

MUC 59.13 64.54 45.59 65.48 46.01 61.57 80.75
BCUBE 73.53 74.43 69.39 72.97 68.74 73.34 86.32
CEAFE 61.75 63.84 57.26 59.7 56.2 61.16 77.8

LEA 48.08 51.76 37.88 50.48 37.89 48.92 72.1
LEA Soft 28.1 28.6 28.69 31.99 30.38 33.58 70.33

Table 4: Semantic Role Prediction on Validation Set. B@1: Bleu-1, B@2: Bleu-2, M: METEOR, R: ROUGE-L, C: CIDEr, Metric-Vb: Macro Averaged
over Verbs, Metric-Arg: Macro Averaged over arguments, Metric-Argi: Metric computed only for the particular argument.



Model GPT2 TxDec Vid TxDec Vid TxEncDec Vid TxDec Vid TxEncDec Human
Vis Feats 7 7 SlowFast SlowFast I3D I3D

B@1 41.89 42.9 43.4 45.36 43.69 45.56 43.46
B@1-Vb 38.41 39.4 39.28 41.03 39.43 40.52 39.73
B@1-Arg 41.9 42.56 42.84 45.25 42.04 44.83 41.47

B@1-Arg0 45.65 46.06 47.56 48.92 48.96 49.75 48.2
B@1-Arg1 32.17 31.53 33.15 34.46 33.93 35.42 41.06
B@1-Arg2 35.02 37.34 34.85 36.69 36.32 38.55 39.69
B@1-ALoc 48.7 46.53 48.74 52.95 43.91 49.18 36.74
B@1-AScn 47.94 51.34 49.88 53.23 47.07 51.25 41.65

B@2 28.43 29.15 30.08 31.64 30.34 31.34 29.43
B@2-Vb 24.25 25.49 25.83 26.9 25.45 26.22 24.37
B@2-Arg 28.41 28.7 29.42 31.56 28.79 30.59 27.95

B@2-Arg0 31.69 31.92 33.56 34.33 34.84 34.76 32.99
B@2-Arg1 19.8 19.88 20.98 22.69 22.3 22.46 26.88
B@2-Arg2 22.43 24.39 22.36 24.15 23.05 24.81 26.27
B@2-ALoc 34.36 31.63 34.18 37.95 30.69 34.32 25.66
B@2-AScn 33.76 35.67 36.03 38.66 33.05 36.62 27.93

M 17.74 17.67 17.45 18.83 18.22 18.7 21.86
M-Vb 15.8 15.84 15.72 17.02 16.92 16.83 22.44
M-Arg 16.63 16.21 16.46 17.9 16.63 17.44 20.55
M-Arg0 21.82 21.83 20.72 21.96 22.2 22.23 24.61
M-Arg1 15.99 14.97 14.39 16.31 16.28 16.53 21.55
M-Arg2 15.39 16.63 15.15 16.22 15.34 15.41 20.11
M-ALoc 16.41 12.96 15.76 17.63 13.59 16.2 16.89
M-AScn 13.55 14.68 16.3 17.36 15.74 16.82 19.58

R 41.33 41.45 41.12 43.46 41.5 42.96 40.04
R-Vb 37.71 36.96 36.66 38.6 36.69 37.72 39.24
R-Arg 40.91 40.65 40.14 42.88 39.68 42.04 38.55
R-Arg0 45.89 46.6 46.75 48.22 48.69 48.3 45.5
R-Arg1 35.13 33.05 33.35 35.67 34.9 36.34 40.03
R-Arg2 34.13 36.83 33.77 35.26 35.58 36.49 37.29
R-ALoc 45.33 40.96 41.53 47.17 35.1 43.06 32.94
R-AScn 44.04 45.82 45.31 48.08 44.14 46.04 36.97

C 36.48 35.34 44.95 47.25 47.9 48.51 83.68
C-Vb 44.27 44.44 49.46 52.92 51.29 53.88 87.78
C-Arg 36.51 32.06 41.98 45.48 43.62 44.53 79.29
C-Arg0 26.17 27.83 36.84 33.51 41.89 38.64 81.62
C-Arg1 39.08 37.99 42.93 43.79 46.53 46.47 81.47
C-Arg2 35.36 41.93 39.16 39.48 41.66 43.84 73.21
C-ALoc 55.05 25.83 48.3 58.38 43.83 45.15 77.38
C-AScn 26.9 26.71 42.65 52.22 44.18 48.57 82.77

MUC 60.51 65.42 47.51 65.91 47.63 62.62 80.8
BCUBE 74.21 74.76 69.84 72.95 69.2 73.6 86.26
CEAFE 62.19 63.85 57.33 59.57 56.65 61.41 77.38

LEA 49.38 52.46 38.91 50.88 38.77 49.61 71.77
LEA Soft 30.24 29.18 30.21 33.5 31.73 35.46 70.6

Table 5: Semantic Role Prediction on Test Set. B@1: Bleu-1, B@2: Bleu-2, M: METEOR, R: ROUGE-L, C: CIDEr, Metric-Vb: Macro Averaged over
Verbs, Metric-Arg: Macro Averaged over arguments, Metric-Argi: Metric computed only for the particular argument.



search gap between learning atomic actions and gener-
ating holistic captions. In particular, the dataset opens
path for the task of Visual Semantic Role Labeling in
Videos which in addition to action-recognition, em-
phasizes how various objects interact within an action,
how various objects interact over time-period across
multiple actions, co-referencing of these objects over
time, and how various actions affect each other.

• Who created the dataset (e.g., which team, research
group) and on behalf of which entity (e.g., company,
institution, organization)? The dataset is created by
the authors who belong to PRIOR Team at AI2. The
first-author (Arka Sadhu) was a summer intern in the
PRIOR Team.

• Who funded the creation of the dataset? PRIOR
Team at AI2 funded the creation of the dataset.

F.2. Composition
• What do the instances that comprise the dataset

represent (e.g., documents, photos, people, coun-
tries)? Each instance consists of a 10-second video
obtained from a movie-clip available on YouTube.
These are usually human-centric and hence primar-
ily contain videos of people interacting in diverse and
complex situations.

• How many instances are there in total (of each
type, if appropriate)? In total there are 27.4K in-
stances distributed across training (23.62K), valida-
tion (1.80K) and testing (1.98K)

• Does the dataset contain all possible instances or is
it a sample (not necessarily random) of instances
from a larger set? This question doesn’t pertain to
our dataset.

• What data does each instance consist of? Each in-
stance is a 10-second video (mp4 video) available from
YouTube.

• Is there a label or target associated with each in-
stance? Each instance (10 second video) is anno-
tated at 2-second intervals with a verb describing the
event, corresponding argument roles for the verb co-
referenced across the video, and event relations across
the various verbs with respect to the middle event
(Event 3 spanning from 4-6 seconds).

• Is any information missing from individual in-
stances? No, every instance has the same annotations.

• Are relationships between individual instances
made explicit (e.g., users’ movie ratings, social net-
work links)? We provide information about which
instances are derived from the same 2 � 3 minutes
YouTube video as well as the underlying movie (this
information is obtained from Condensed-Movies [3]

dataset). However, this information is not used for any
of the task in the dataset except for splitting the videos
in train, validation and test sets.

• Are there recommended data splits (e.g., training,
development/validation, testing)? Yes, we provide
training, validation and test sets by splitting the overall
set in 80 : 10 : 10 ratio randomly based on the movie
names. We also ensure (qualitatively) that the normal-
ized distributions of verbs, and genres are same across
the splits.

• Are there any errors, sources of noise, or redundan-
cies in the dataset? The main sources of errors would
be the annotations themselves, however, we have made
extended efforts from automatic to manual checks to
remove such errors and provided constant feedback.
Some redundancy may occur due to oversampling of
dialogues in movies which are described with the verb
“talk”. Some redundancy may also occur due to use of
closely related verbs such as “run” and “jog”.

• Is the dataset self-contained, or does it link to or
otherwise rely on external resources (e.g., websites,
tweets, other datasets)? Yes, the dataset provides
links to YouTube videos. Since the videos are pro-
vided by a licensed channel, we expect the videos to
have high online longevity.

• Does the dataset contain data that might be con-
sidered confidential (e.g., data that is protected by
legal privilege or by doctor patient confidentiality,
data that includes the content of individuals’ non-
public communications)? No, our dataset is derived
from movies publicly available on youtube.

• Does the dataset contain data that, if viewed di-
rectly, might be offensive, insulting, threatening, or
might otherwise cause anxiety? Some of the videos
obtained from action, crime or horror movies may be
sensitive to some viewers when viewed directly. Some
videos may also contain violence and gore, and we
suggest user discretion in viewing the videos.

F.3. Collection Process

• How was the data associated with each instance ac-
quired? The data was directly observable in the form
of embedded youtube videos.

• What mechanisms or procedures were used to col-
lect the data (e.g., hardware apparatus or sensor,
manual human curation, software program, soft-
ware API)? We used Amazon Mechanical Turk to
collect the data with a custom annotation interface. We
validated them by small scale user study and taking
feedbacks during worker qualification.



• If the dataset is a sample from a larger set, what
was the sampling strategy (e.g., deterministic, prob-
abilistic with specific sampling probabilities)? We
sampled videos which had more verbs within their du-
ration.

• Who was involved in the data collection process
(e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were
crowdworkers paid)? Crowd-Workers were involved
in the process. They were paid $0.75 for training
videos and $0.2 for verb annotation and $0.7 for ar-
gument and event relation for videos in validation and
test splits. On average it is around $9 � $12 per hour
above the minimum wage. On popular websites, our
pay was noted to be generous.

• Over what timeframe was the data collected? The
data was collected over 2.2 months with initial 1.2
months for training set and rest for validation and test-
ing.

• Were any ethical review processes conducted (e.g.,
by an institutional review board)? No, there was no
ethical review process.

F.4. Preprocessing/cleaning/labeling
• Was any preprocessing/cleaning/labeling of the

data done (e.g., discretization or bucketing, tok-
enization, part-of-speech tagging, SIFT feature ex-
traction, removal of instances, processing of miss-
ing values)? Only, exact string match was performed
to obtain co-referenced entities. We used spacy [27]
to compute dataset statistics such as noun-diversity but
it is not used over the collected data for down-stream
tasks.

• Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unan-
ticipated future uses)? In our case, raw data is same
as cleaned data.

F.5. Uses
• Has the dataset been used for any tasks already?

We have used the data to show its usefulness for
our proposed task Visual Semantic Role Labeling in
Videos

• Is there a repository that links to any or all papers
or systems that use the dataset? Updated informa-
tion about the dataset can be found on vidsitu.
org.

• What (other) tasks could the dataset be used for?
We believe the dataset could be re-purposed for many
down-stream video understanding tasks such as video
retrieval, video question answering, action forecasting,
long-term reasoning.

• Are there tasks for which the dataset should not be
used? The data is obtained from movies and exhibits
certain stereotypes which donot hold true in real world.
It also contains highly unlikely action sequences (such
as a “man flying”), and thus it shouldn’t be used for
real-world cases and strictly used as a video under-
standing benchmark.

F.6. Distribution
• Will the dataset be distributed to third parties out-

side of the entity (e.g., company, institution, organi-
zation) on behalf of which the dataset was created?
The dataset is publicly available at vidsitu.org.

• How will the dataset will be distributed (e.g., tarball
on website, API, GitHub)? The dataset is available
through our website and github. The dataset is stored
on Amazon S3 buckets.

vidsitu.org
vidsitu.org
vidsitu.org
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