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1. Images and Masks

For each selected tuple (I1, I2, I3), we extract hair and face
masks using Graphonomy [2]. We separately dilate and
erode Mh

2 , the hair mask of I2, to produce the dilated ver-
sion, Mh,d

2 , and the eroded version, Mh,e
2 . Using Mh,d

2 and
Mh,e

2 , we compute the ignore region Mh,ir
2 . We exclude

the ignore region from the background and let StyleGANv2
inpaint relevant features. We want to optimize for recon-
struction of I1’s face, reconstruction of I2’s hair shape and
structure, transfer of I3’s hair appearance and style, and in-
painting of the ignore region. Given a tuple, Figure 1 shows
the images and relevant masks used during optimization.

2. Alignment Metrics

To categorize each selected tuple (I1, I2, I3), we calculate
the Intersection over Union (IoU) and pose distance (PD)
between face masks, and 68 2D facial landmarks. We ex-
tract the masks using Graphonomy [2], and estimate land-
marks using 2D-FAN [1].

IoU and PD quantify to what degree two faces align.
Given the two binary face masks, Mf

1 and Mf
2 , we com-

pute IoU as

IoU =
Mf

1 ∩Mf
2

Mf
1 ∪Mf

2

. (1)

The pose distance (PD), on the other hand, is defined in
terms of facial landmarks. Given the two 68 2D facial land-
marks, Kf

1 ∈ R68×2 and Kf
2 ∈ R68×2, corresponding to

I1 and I2, PD is calculated by averaging the L2 distances
computed between each landmark

PD =
1

68

68∑
k=1

‖Kf
1,k −Kf

2,k‖2 (2)

where k indexes the 2D landmarks. Therefore, a tuple
where I1 and I2 are the same person (Figure 2) would have
an IoU of 1.0 and PD of 0.0.
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Figure 1: Tuple (I1, I2, I3) and relevant masks used in LOHO.

3. StyleGANv2 Architecture
StyleGANv2 [3] can synthesize novel photorealistic im-
ages at different resolutions including 1282, 2562, 5122 and
10242. The number of layers in the architecture therefore
depends on the resolution of images being synthesized. Ad-
ditionally, the size of the extended latent spaceW+ and the
noise space N also depend on the resolution. Embeddings
sampled from W+ are concatenations of 512-dimensional
vectors w, where w ∈ W+. As our experiments synthe-
size images of resolution 5122, the latent space is a vec-
tor subspace of R15×512, i.e., W+ ⊂ R15×512. Addition-
ally, noise maps sampled from N are tensors of dimension
R1×1×h×w, where h and w match the spatial resolution of
feature maps at every layer of the StyleGANv2 generator.

4. Effect of Regularizing Noise Maps
To understand the effect of noise map regularization, we
visualize noise maps at different resolutions post optimiza-
tion. When the regularization term is set to zero, we normal-
ize the noise maps to be zero mean and unit variance. This
causes the optimization to inject actual signal into the noise
maps, thereby causing overfitting. Figure 3 shows that the
noise maps encode structural information of the facial re-



Figure 2: IoU and PD for tuples in each category. Rows 1-2: Easy
tuples. Rows 3-4: Medium tuples. Rows 5-6: Difficult tuples.
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Figure 3: Effect of regularizing noise maps. Col 1 (narrow):
Reference images. Col 2: Identity person. Col 3: Synthesized
images. Cols 4&5: Noise maps at different resolutions.

gion, which is not desirable, and cause the synthesized im-
ages to have artifacts in the face and hair regions. Enabling
noise regularization prevents this.

Figure 4: Effect of Gradient Orthogonalization (GO). Rows
1&3: Reference images (from left to right): Identity, target hair
appearance and style, target hair structure and shape. Rows 2&4:
Pairs (a) and (b), and (c) and (d) are synthesized images and their
corresponding hair masks for no-GO and GO methods, respec-
tively. The same holds for pairs (e) and (f), and (g) and (h).

5. Additional Examples of Gradient Orthogo-
nalization

Gradient Orthogonalization (GO) allows LOHO to retain
the target hair shape and structure during stage 2 of op-
timization. Figure 4 shows that no-GO fails to maintain
the perceptual structure. On the other hand, GO is able to
maintain the target perceptual structure while transferring
the target hair appearance and style. As a result, the IoU
calculated between Mh

2 and Mh
G increases from 0.547 (no-

GO, Figure 4 (b)) to 0.603 (GO, Figure 4 (d)). In the same
way, the IoU increases from 0.834 (no-GO, Figure 4 (f)) to
0.857 (GO, Figure 4 (h)).

6. Additional comparisons with MichiGAN

We provide additional evidence to show that LOHO ad-
dresses blending and misalignment better than Michi-
GAN [4]. The ignore region Mh,ir

2 (Figure 1), in addition
to StyleGANv2’s powerful learned representations, is able
to inpaint relevant hair and face pixels. This infilling causes
the synthesized image to look more photorealistic as com-
pared with MichiGAN. In terms of style transfer, LOHO
achieves similar performance as MichiGAN (Figure 5).



Figure 5: Qualitative comparison of MichiGAN and LOHO. Col
1 (narrow): Reference images. Col 2: Identity person Col 3:
MichiGAN output. Col 4: LOHO output (zoomed in for bet-
ter visual comparison). Rows 1-2: MichiGAN “copy-pastes” the
target hair attributes while LOHO blends the attributes, thereby
synthesizing more realistic images. Row 3: LOHO handles mis-
aligned examples better than MichiGAN. Row 4: LOHO transfers
the right style information.

7. Additional Results of LOHO

We present results to show that LOHO is able to edit in-
dividual hair attributes, such as appearance and style (Fig-
ure 6), and shape (Figure 7), while keeping other attributes
unchanged. LOHO is also able to manipulate multiple hair
attributes jointly (Figure 8,9,10).
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Figure 6: Transfer of appearance and style. Given an identity image, and reference image, LOHO transfers the target hair appearance
and style while preserving the hair structure and shape. Row 1: Identity images. Rows 2-6: Hair appearance and style references (Cols:
1, 3, 5), and synthesized images (Cols: 2, 4, 6).



Figure 7: Transfer of shape. Given an identity image, and reference image, LOHO transfers the target hair shape while preserving the hair
appearance and style. Row 1: Identity images. Rows 2-6: Hair shape references (Cols: 1, 3, 5), and synthesized images (Cols: 2, 4, 6).



Figure 8: Multiple attributes editing. Given an identity image, and reference images, LOHO transfers the target hair attributes.



Figure 9: Multiple attributes editing. Given an identity image, and reference images, LOHO transfers the target hair attributes.



Figure 10: Multiple attributes editing. Given an identity image, and reference images, LOHO transfers the target hair attributes.


