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In this document, we provide supplementary materials
for our main paper submission. The main paper reported
our experimental results using three standard UDA evalu-
ation protocols (EPs) where the SYNTHIA dataset [7] is
used as the synthetic domain. To demonstrate our pro-
posed method’s effectiveness on an entirely new UDA set-
ting, in Sec. S1, we report semantic segmentation results of
our method on a new EP: Virtual KITTI → KITTI. In this
setup, we use synthetic Virtual KITTI [3] as the source do-
main and real KITTI [4] as the target domain. We show that
our proposed method consistently outperforms the SOTA
DADA method [9] when evaluated on this new EP with dif-
ferent synthetic and real domains. In Sec. S2, we present
a t-SNE [8] plot comparing our method with [9]. We
also share additional qualitative results on SYNTHIA →
Cityscapes (16 classes). Sec. S3 details our network de-
sign. To demonstrate that the proposed CTRL is not sensi-
tive to a particular network design (in our case, the residual
auxiliary block [5]), we train a standard multi-task learn-
ing network architecture (i.e., a shared encoder followed by
multiple task-specific decoders without any residual auxil-
iary block) with CTRL and notice a similar improvement
trend over the baselines. The set of experiments and the
results are discussed in Sec. S4.

S1. Virtual KITTI→ KITTI

Following [2], we train and evaluate our model on 10
common classes of Virtual KITTI and KITTI. In KITTI,
the ground-truth label is only available for the training set;
thus, we use the official unlabelled test images for do-
main alignment. We report the results on the official train-
ing set following [2]. The model is trained on the anno-
tated training samples of VKITTI and unannotated samples
of KITTI. For this experiment, we train our model with-
out (w/o) ISL. Table S1 reports the semantic segmentation
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Figure S1: t-SNE comparison of features learned by
DADA [9] and CTRL. It leads to more structured feature
space and better class separation in the target domain. Cir-
cled classes have a better separation than the other method.

performance (mIoU%) of our approach. Our model out-
performs DADA [9], with significant gains coming from
the following classes: “sign” (+8.1%), “pole” (+5.7%),
“building” (+2.7%), and “light” (+1.9%). Notably, these
classes are practically highly relevant to an autonomous
driving scenario. In Figure S2, we present some qualita-
tive results of DADA and our models trained following the
new Virtual KITTI→ KITTI UDA protocol.

S2. SYNTHIA→ Cityscapes

This section presents a t-SNE [8] plot of the feature em-
beddings learned by the proposed model guided by CTRL,
and [9]. Fig. S1 shows 10 top-scoring classes of each
method; distinct classes are circled. As can be seen from
the figure, CTRL leads to more structured feature space,
which concurs with our analysis of the main paper. Both
models are trained and evaluated following the UDA pro-
tocol SYNTHIA → Cityscapes (16 classes). Furthermore,
we present additional qualitative results of our model for se-
mantic segmentation and monocular depth estimation. Fig-
ures S3, S4 show the results of the qualitative comparison
of our method with [9]. Note that our proposed method has
higher spatial acuity in delineating small objects like “hu-
man”, “bicycle”, and “person” compared to [9]. Figure S5
shows some qualitative monocular depth estimation results.
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Table S1: Semantic segmentation performance (IoU and mIoU, higher is better, %) comparison to the prior art. All models
are trained and evaluated using the UDA evaluation protocol Virtual KITTI→ KITTI.
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Chen et al. [2] X 81.4 71.2 11.3 26.6 23.6 82.8 56.5 88.4 80.1 12.7 53.5
DADA [9] X 90.9 76.2 12.4 30.3 30.8 73.5 24.1 88.4 86.8 17.2 53.0

Ours (w/o ISL) X 90.9 78.9 18.1 32.2 38.9 73.7 22.0 88.2 86.2 16.7 54.6

Table S2: Semantic segmentation performance (mIoU) of
two variants of the proposed model. Both models outper-
form DADA [9] attesting the robustness of features learned
by the proposed CTRL.

UDA Protocol DADA Ours∗ Ours

S→ C 16 cls 42.6 43.7±0.2 45.0±0.3
S→ C (LR) 7 cls 63.4 63.8±0.5 64.7±0.5
S→M (LR) 7 cls 55.8 61.5±0.6 62.1±0.4
S→ C (FR) 7 cls 69.2 71.3±0.5 70.8±0.4

S→M (FR) 7 cls 67.6 70.1±0.5 69.0±0.1

S3. Network Architecture Design
The shared part of the semantic and depth prediction net-

work Fe consists of a ResNet-101 backbone and a decoder.
The decoder consists of four convolutional layers, each fol-
lowed by a Rectified Linear Unit (ReLU). The decoder out-
puts a feature map that is shared among both semantics and
depth heads. This shared feature map is fed forward to the
respective semantic segmentation, monocular depth estima-
tion, and semantics refinement heads. For the task-specific
and task-refinement heads, we use Atrous Spatial Pyramid
Pooling (ASPP) with sampling rates [6, 12, 18, 24] and the
Deeplab-V2 [1] architecture. Our DC-GAN [6] based do-
main discriminator takes as input a feature map with chan-
nel dimension 2×C+K, where C is the number of semantic
classes, and K is the number of depth levels.

S4. Robustness to Different Network Design
Our proposed model adopts the residual auxiliary block

[5] (as in [9]), which was originally proposed to tackle a
particular MTL setup where the objective was to improve
one primary task by leveraging several other auxiliary tasks.
However, unlike [9] which doesn’t have any decoder for
depth, we introduce a DeepLabV2 decoder for depth esti-

mation to improve both task performances. Our qualitative
and quantitative experimental results show an improvement
of depth estimation performance over [9]. Furthermore,
we are interested to see the proposed model’s performance
when used with a standard MTL architecture (a common
encoder followed by multiple task-specific decoders with-
out any residual auxiliary blocks). To this end, we make
necessary changes to our existing network design to have a
standard MTL network design. We then train it following
UDA protocols. The details of our experimental analysis
are given below.

For the standard MTL model (denoted as “Ours*” in Ta-
ble S2), the depth head is placed after the shared feature ex-
tractorFe. The shared feature extractor consists of a ResNet
backbone and decoder network (see Fig. 2). For the second
model with residual auxiliary block (denoted as “Ours”),
we positioned the depth head after the decoder’s third con-
volutional layer. The semantic segmentation performance
of these two variants of the proposed model is shown in
Table S2. Both models are evaluated on the five different
UDA protocols and outperform state-of-the-art DADA [9]
results. The results show that our proposed CTRL is not
sensitive to architectural changes and can be used with stan-
dard encoder-decoder MTL frameworks. Our findings may
be found beneficial for the domain-adaptive MTL commu-
nity, e.g., in answering a question whether learning addi-
tional complementary tasks (surface normals, instance seg-
mentation) performs domain alignment.
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Figure S2: Qualitative semantic segmentation results with VKITTI→ KITTI (10 classes) UDA evaluation protocol. (a) Input
image from the target domain KITTI; (b) ground truth annotations; (c) DADA [9] predictions; (d) our model predictions. We
follow the color encoding scheme of Cityscapes to colorize the label maps.
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Figure S3: Qualitative semantic segmentation results with EP1: SYNTHIA → Cityscapes (16 classes). (a) Images from
Cityscapes validation set; (b) ground truth annotations; (c) DADA [9] predictions; (d) our model predictions. Our method
demonstrates notable improvements over [9] on “bus”, “person”, and “bicycle” classes as highlighted using the yellow boxes.
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Figure S4: Qualitative semantic segmentation results with EP1: SYNTHIA → Cityscapes (16 classes). (a) Images from
Cityscapes validation set; (b) ground truth annotations; (c) DADA [9] predictions; (d) our model predictions. Our method
demonstrates notable improvements over [9] on “bus”, “person”, and “bicycle” classes as highlighted using the yellow boxes.
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(a) Input Image (b) Ground truth (c) DADA (d) Ours

Figure S5: Qualitative monocular depth estimation results with EP1: SYNTHIA→ Cityscapes (16 classes). (a) Images from
Cityscapes validation set; (b) ground truth annotations; (c) DADA [9] predictions; (d) our model predictions.
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