
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking
(Supplementary Material)

Fatemeh Saleh1,2, Sadegh Aliakbarian1,2, Hamid Rezatofighi3, Mathieu Salzmann4,5, Stephen Gould1,2

1Australian National University, 2ACRV, 3Monash University, 4CVLab, EPFL, 5ClearSpace
fatemehsadat.saleh@anu.edu.au

1. Architecture Details
As illustrated in Fig. 2 of the main paper, our novel

model consists of two subnetworks, MA-Net and ArTIST.
These two subnetworks are trained jointly. In this section,
we introduce the architecture and implementation details of
each of these subnetworks.

MA-Net. MA-Net is a recurrent autoencoder that is
trained to capture the representation of motion of all agents
in the scene. This is achieved by learning to reconstruct
the motion of tracklets. The subnetwork consists of an en-
coder that takes as input a 4D motion velocity representa-
tion, passes it through a fully-connected layer with 128 hid-
den units and a ReLU non-linearity, followed by a single
GRU with 256 hidden units. The last hidden state of this
(encoder) GRU initializes the hidden state of the decoder’s
GRU. The decoder is based on a residual GRU network that
learns the velocity of changes in motion. To this end, given
the initial hidden state and a seed 4D motion velocity rep-
resentation (the velocity of changes between the first two
consecutive frames), the decoder reconstructs each tracklet
autoregressively. On top of each GRU cell of the decoder,
there exists a MLP that maps the hidden representation to a
4D output representation, i.e., the reconstructed velocity of
motion at each time-step.

ArTIST. ArTIST takes as input a 4D motion velocity rep-
resentation and a 256D interaction representation. The mo-
tion velocity is first mapped to a higher dimension via a
residual MLP, resulting in a 512D representation. We then
combine this with the interaction representation through
concatenation. The resulting representation is then passed
through a fully-connected layer that maps it to a 512D rep-
resentation, followed by a ReLU non-linearity. This then
acts as the input to a single layer LSTM with 512 hidden
units to process the sequence. The LSTM produces a resid-
ual 512D vector, which is appended to its input to generate
the final representation. To map the output of the LSTM to
a probability distribution for each component of the motion

velocity, we use 4 fully-connected layers (mapping 512D to
KD) followed by softmax activations, resulting in a 4 ×K
representation, where K = 1024 is the number of clusters.

2. Implementation Details

We train our model on a single GTX 2080Ti GPU with
the Adam optimizer [2] for 110K iterations. We use a learn-
ing rate of 0.001 and a mini-batch size of 256. To avoid
exploding gradients, we use the gradient-clipping technique
of [4] for all layers in the network. Since we use the ground-
truth boxes during training, we apply random jitter to the
boxes to simulate the noise produced by a detector. We
train our model with sequences of arbitrary length (in range
[5, 100]) in each mini-batch. During training, we use the
teacher forcing technique of [7], in which ArTIST chooses
with probability Ptf whether to use its own output (a sam-
pled bounding box) at the previous time-step or the ground-
truth bounding box to compute the velocity at each time-
step. We use Ptf = 0.2 for the frames occurring after 70%
of the sequence length. For our online tracking pipeline,
we terminate a tracklet if it has not been observed for 30
frames. For tracklet rejection in the case of inpainting, we
use an IOU threshold of 0.5 and set tTRS = 1 for low
frame-rate videos and tTRS = 2 for high frame-rate ones.
During multinomial sampling, we sample S = 50 candidate
tracklets. Note that, we also use the PathTrack [3] dataset,
containing more than 15,000 person trajectories in 720 se-
quences, to augment MOT benchmark datasets. We imple-
mented our model using the Pytorch framework of [5].

3. ArTIST Pseudo-code for Tracking

In Algorithm 1, we provide the pseudo-code of our track-
ing algorithm. Following our discussion in Section 3 of the
main paper, given the trained ArTIST model, detections,
and current tracklets, this algorithm demonstrates how our
approach updates tracklets at each time-step.

Algorithm 1 ArTIST tracking at time t

1: procedure TRACKING(Dt, T, S)
2: Cost = zeros(|T|, |Dt|) . The cost matrix
3: FullSeq = [] . List of fully observed tracklets
4: InpaintSeq = [] . List of partially observed tracklets
5:
6: for Tj in T do
7: ∆j = seq2vel(Tj) . Compute motion velocity
8: Ij = agg(MA-Net.encode(T \ {Tj})) . Compute interaction representation
9:

10: if gap(Tj) == 0 then . Handle tracklets with full observation
11: FullSeq.append(j)
12: p(bboxt

Tj
) = ArTIST(∆j , Ij) . Compute the likelihood of next plausible bounding box

13: for dti in Dt do . Compute the cost of assigning detections to Tj

14: Cost[j][i] = NLL(p(bboxt
Tj

), dti)

15:
16: if gap(Tj) > 0 then . Handle tracklets that require inpainting
17: InpaintSeq.append(j)
18: ∆̂j,[1:S] = Inpaint(∆j , Ij , gap(Tj), S) . Inpaint S continuations for gap(Tj) time-steps
19: ∆̂j = TRS(∆̂j,[1:S], Dt) . Choose the best of S continuations
20: ∆j = [∆j , ∆̂j] . Synthesize full sequence
21: p(bboxt

Tj
) = ArTIST(∆j , Ij) . Compute the likelihood of next plausible bounding box

22: for dti in Dt do . Compute the cost of assigning detections to Tj

23: Cost[j][i] = NLL(p(bboxt
Tj

), dti)

24:
25: assignf , uDf , uTf = Munkres(Cost, Dt, T, FullSeq) . Assignment for fully observed tracklets
26: assigni, uDi, uTi = Munkres(Cost, uDf , T, InpaintSeq) . Assignment for inpainted tracklets (given the unassigned detections)
27: assignment = Combine(assignf , assigni) . Total assignment
28: update(T, assignment) . Update the tracklets at time-step t

4. Effect of Multinomial Sampling
In order to better show the effect of multinomial sam-

pling, we provide a more detailed view of the ablation study
provided in Table 6 of the main paper, as that in Table 1.
This makes it clearer that the impact of our Multi+TRS
sampling is larger on moving cameras than on static ones,
significantly improving identity-preservation metrics, e.g.,
IDF1 and IDs.

Table 1. Per-sequence comparison between Top-1 and Multi+TRS.
Sequence Camera FPS Setting MOTA↑ IDF1↑ IDs↓

MOT17-04 Static 30 Top-1 70.2 73.2 55
Multi+TRS 71.0 74.6 41

MOT17-05 Moving 14 Top-1 57.5 65.0 38
Multi+TRS 59.3 69.6 25

MOT17-11 Moving 30 Top-1 64.9 61.1 17
Multi+TRS 66.3 70.0 13

5. Sampling Quality
We also evaluate the quality of the generated sequences.

To this end, we compare deterministic sampling (top-1)
with our stochastic sampling at inference in Table 2, in
which we compute the mIoU between the entire sequence

of generated bounding boxes and the GT ones. For the
stochastic case, we compute the best score over 30 samples.
We performed this experiment on 1K tracklets of varying
length and giving variable observation lengths to the model.
As can be seen in Table 2, the relative improvement over
the deterministic case increases as the observation length
decreases.

Table 2. Evaluating sampling quality for future tracklet generation
on 1000 random variable-length tracklets of the MOT17 val.

Observation Future Deterministic Stochastic Relative Improvement
75% 25% 75.3% 83.7% 11.1%
50% 50% 64.0% 75.3% 17.7%
25% 75% 54.4% 68.7% 26.3%

6. Evaluation Metrics
Several metrics are commonly used to evaluate the qual-

ity of a tracking system [6, 1]. The main one is MOTA,
which combines quantification of three error sources: false
positives, false negatives and identity switches. A higher
MOTA score implies better performance. Another impor-
tant metric is IDF1, i.e., the ratio of correctly identified de-
tections over the average number of ground-truth and com-

puted detections. The number of identity switches, IDs, is
also frequently reported. Furthermore, the following met-
rics provide finer details on the performance of a tracking
system: mostly tracked (MT) and mostly lost (ML), that
are respectively the ratio of ground-truth trajectories that
are covered/lost by the tracker for at least 80% of their re-
spective life span; False positives (FP) and false negatives
(FN). All metrics were computed using the official evalua-
tion code provided by the MOTChallenge benchmark.

References
[1] Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple

object tracking performance: the clear mot metrics. Journal
on Image and Video Processing, 2008:1, 2008. 2

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

[3] Santiago Manen, Michael Gygli, Dengxin Dai, and Luc
Van Gool. Pathtrack: Fast trajectory annotation with path su-
pervision. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 290–299, 2017. 1

[4] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On
the difficulty of training recurrent neural networks. In Inter-
national conference on machine learning, pages 1310–1318,
2013. 1

[5] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-
entiation in PyTorch. In NIPS Autodiff Workshop, 2017. 1

[6] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara,
and Carlo Tomasi. Performance measures and a data set for
multi-target, multi-camera tracking. In European Conference
on Computer Vision, pages 17–35. Springer, 2016. 2

[7] Ronald J Williams and David Zipser. A learning algorithm for
continually running fully recurrent neural networks. Neural
computation, 1(2):270–280, 1989. 1

