Back to the Feature: Learning Robust Camera Localization from Pixels to Pose
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Supplemental

In the following pages, we provide additional details on
the experiments conducted in the main paper. Section A
analyzes the convergence of the alignment depending on
the accuracy of the initial pose. In Section B, we evaluate
the benefits of learning environment-specific priors. In Sec-
tion C, we assess the impact of the accuracy of the 3D model.
Section D analyzes the ground truth poses of the RobotCar
dataset, supporting the results of the evaluation performed in
Section 5.3. In Section F, we explain the computation of the
convergence basin shown in Figure 5 and provide additional
examples. In Section E, we provide qualitative examples for
the localization experiment of Section 5.2. Lastly, in Sec-
tion G, we provide details on the implementation of PixLoc,
its training, and the ablation study presented in Section 5.4.

A. Convergence and initial pose

Convergence: The pose optimization in PixLoc tends to
converge to spurious local minima if the initial pose is too
coarse, such as on the Aachen dataset, in which reference
images are sparse. Since the receptive field of the CNN
is limited, the convergence mostly depends on the initial
2D reprojection error, which accounts for the rotation and
translation errors and for the distance to the 3D structure. The
exact density of reference images required for high success
thus depends on the distance to the scene.

We report in Figure | the success rate for different ini-
tial reprojection errors and their distribution for the oracle
retrieval, with hloc as pseudo ground truth. Convergence
within 1 meter is observed for 80% of the cases only when
the initial error is smaller than 200 pixels and is significantly
reduced for larger errors.

Initial pose: The 7Scenes and Cambridge datasets have
reference poses with a high density. In driving scenarios like
in the RobotCar and CMU datasets, there are no rotation
changes between reference and query poses. In all these sce-
narios, initializing PixLoc with the pose of the first retrieved
image is therefore sufficient.

To improve the performance on the Aachen dataset, the
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Figure 1. Impact of the initial pose on the Aachen dataset. The
success of the pose optimization decreases with larger initial repro-
jection errors, which vary significantly across the 922 queries.

Aachen Day-Night
Day Night

top-1 61.7/67.6/74.8 46.9/53.1/64.3
top-3 averaging 64.3/69.3/77.4 51.0/55.1/67.3
oracle prior 68.0/74.6/80.8 57.1/69.4/76.5

Initial pose

Table 1. Selection of the initial pose. Averaging the poses of the
top retrieved images improves the convergence of PixLoc compared
to simply selecting the pose of the first image.
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Figure 2. Learned motion prior. Training on data recorded with
3-DoF car-mounted cameras (CMU, in red) or with 6-DoF hand-
held devices (MegaDepth, in blue) results in different motion priors
learned by the damping factor A. Larger relative values indicate
smaller expected motion in the corresponding direction.

results in Table 2 rely on additional filtering steps. We first
cluster the top-3 retrieved reference images based on their
covisibility [7,9] and only retain the images that belong to the
largest cluster. We then perform a weighted average of the
reference poses [4], where the weights are computed from
the similarity of the global descriptors [60]. We compare in



Table 1 the results obtained with this pose averaging and with
the top-1 retrieval. To further improve the convergence, one
could also rerank based on featuremetric error or initialize
with poses randomly sampled around top-retrieved poses.

B. Benefits of training on different datasets

The training datasets CMU and MegaDepth reflect dif-
ferent scenarios, autonomous driving and tourism landmark
photography, respectively. Training on each one separately
allows to learn task-specific priors and demonstrates the
ability of PixLoc to adapt to the environment.

Each dataset depicts scenes with different semantic el-
ements (street-level landscapes and urban landmarks, re-
spectively) and different changes of conditions (weather and
season for CMU, cameras, occluders, and viewpoints for
MegaDepth). Figure 6 mentions that the models learn to ig-
nore different unreliable elements depending on the training
dataset. For example, tree silhouettes are reliable on CMU
due to the small viewpoint changes, but are ignored by the
model trained on MegaDepth.

Cameras also exhibit different motions, as they are either
car-mounted or hand-held. Such priors are learned by the
model through the damping factors, which we visualize in
Figure 2. On CMU, the motion across query and reference
images is mostly a translation along the x and z axis of the
camera, and never along the y axis (fixed height above the
ground plane) or a rotation around the z axis (fixed roll).
Differently, the motion on MegaDepth is more uniformly
distributed among the 6 DoF, resulting in similar factors. The
relative scale between the two sets of factors is irrelevant.

These learned priors have a noticeable impact on the per-
formance, as shown in Table 2. Training on CMU performs
better than training on MegaDepth when evaluating on a
driving dataset like RobotCar. When evaluating on a totally
different environment like Aachen, it however still performs
better than a scene-specific approach like ESAC (shown in
Table 2). PixLoc thus generalizes well across scenarios but
can also learn and exploit their specificities.

C. Accuracy of the 3D model

When localizing on the Cambridge Landmarks dataset,
PixLoc relies on SfM models triangulated by hloc [7, 8]. For
indoor scenes of the 7Scenes dataset, we found that the 3D
SfM points are less accurate than the dense depth provided
with the dataset. The results in the main paper (Table 1) are
thus based on this dense depth.

More specifically, we rely on the depth maps rendered by
Brachmann et al. [1], which are aligned to the color images
and are less noisy than the original depth maps. We simply
replace each 3D SfM point by back-projecting one of its 2D
observations using the interpolated depth and the image pose.
This 3D model has the same sparsity as the SfM point cloud

Aachen (urban scenes like MD) CMU (natural scenes)

Training
dataset Day Night Urban Park

MD 68.0/74.6/80.8 57.1/69.4/76.5 78.3/81.8/94.6 72.5/75.5/90.3
CMU 54.4/62.6/743 46.9/54.1/68.4 91.9/93.4/95.8 84.0/85.8/90.9

Table 2. Cross-dataset evaluation with oracle prior. Training
and testing in different environments does not perform as well as
training for the target distribution. Task-specific priors learned by
PixLoc, like semantics and motion, are thus largely beneficial.

3D median error in translation/rotation (cm/®) |
from Chess Fire Heads Office Pumpkin Kitchen Stairs

SftM 3/0.90 2/0.87 1/0.79 3/0.96 5/1.42
RGB-D 2/0.80 2/0.73 1/0.82 3/0.82 4/1.21

RT

4/1.44 6/1.38 69.5
3/1.20 5/1.30 75.7

Table 3. Depth sensor fusion vs. SfM point cloud. For the
7Scenes indoor environment, localizing with 3D points obtained
from depth maps fused across multiple view (RGB-D SLAM) is
more accurate than with point clouds triangulated with SfM.

but is more accurate. This process is fair as it relies on the
same data as all other learning-based approaches, which use
the full dense 3D model for training.

We show in Table 3 the impact on the performance of
PixLoc. Using this corrected 3D model results in more accu-
rate localization than the triangulated SfM model.

D. Inaccuracy of ground truth poses

The RobotCar v2 dataset has publicly available ground
truth poses for a subset of the queries. We project 3D SfM
points into the query images using ground truth poses and
those estimated by hloc. We observe in many instances a
large reprojection error, where hloc poses look qualitatively
more accurate. Some examples are shown in Figure 3. This
might explain why no method localizes more than 58% of the
daytime images at the finest threshold according to the public
leaderboard '. This might also explain why refining poses
with PixLoc does not show improvements for the day-time
queries of RobotCar, as observed in Section 5.3.

Similar artifacts were found in training sequences of the
Extended CMU Seasons dataset, making the training super-
vision noisier. We however do not know if this also applies
to the poses of the test sequences because such poses are not
publicly available.

E. Qualitative examples

We show examples of successful localization on the Ex-
tended CMU Seasons dataset in Figure 4. We show failure
cases in Figure 5. Similarly, we show successful and failed
examples on the Aachen Day-Night dataset in Figures 6
and 7, respectively. Videos and animations of the uncertain-
ties and the optimization are available along with the code
and trained weights at github.com/cvg/pixloc.

lhttps://www.visuallocalization.net/benchmark/


https://github.com/cvg/pixloc
https://www.visuallocalization.net/benchmark/

F. Attraction basin

Computation: We compute the basin of attraction of a
given point by backtracking feature gradients throughout the
levels and scales. For each pixel, we consider the 2 neighbors,
in an 8-connected neighborhood, that are in the direction
opposite to the feature gradient 3Fq/apfz—rrfc. A pixel is in
the basin of attraction if any of those two are themselves in
the basin. The voting is performed in a soft manner using
the gradient angle, resulting in a basin score for each pixel.
We first label the point of interest as in the basin and then
iteratively run the algorithm at each level, from the finest to
the coarsest level, moving to the next one when the scores
stop changing. Note that the total convergence basin of the
pose, which corresponds to the aggregation of all the points,
might be smaller or larger.

Visualization: We show one example in Figure 5 in the
main paper, where we color pixels that belong to the basin by
changing their hue according to the angle of the total gradient.
We show additional examples in Figure 8, but showing the
gradient field as arrows only.

G. Experimental details

We now provide more details about the implementation
of PixLoc and the experiments.

Implementation: The CNN and the optimizer are imple-
mented in PyTorch [5]. The linear system of the Levenberg-
Marquardt step (Equation 4) is solved using the Cholesky
decomposition. The lookup of features and uncertainty is
computed via bilinear interpolation. We use the Cauchy ro-
bust cost function with scale 0.1. When computing the resid-
uals or the Jacobian matrix, we ignore points that project
outside the image or within 2 pixels of the image borders.
We set Apin=—06 and A\;,,.=>b.

Training: We train PixLoc with image pairs composed of
a query image and a single reference image. For each pair,
we sample 512 3D points visible in the reference image
according to the SfM covisibility information. We apply
gradient checkpointing to each block of the encoder and of
the decoder to minimize the GPU memory consumption. The
network is trained for 50k iteration with a constant learning
rate of 107° and the Adam optimizer [3]. To stabilize the
training, the average loss per pair is clamped to 50 pixels
and the per-parameter gradients are clipped to [—1, 1].

When training on the CMU dataset, we use slices 8-12
and 22-25 for training and slices 6, 13, 21 for validation.
We train with batches of 3 image pairs. The images are
resized such that their smallest dimension is 720 pixels and
we sample square crops of 720 pixels The query pose is
initialized with the pose of the reference image.

When training on the MegaDepth dataset, we use the
same split of scenes as Dusmanu et al. [2] and sample image

Nearest reference image

e 1 LT
Figure 3. Inaccurate RobotCar ground truth poses. We plot the
projection of 3D SfM points in the query images according to the
ground truth (in blue) and hloc (in red) poses. We project the same
points in the reference images using the reference poses (in blue).
Query points using hloc are better aligned to the reference points,
indicating that the ground truth query poses are inaccurate.

pairs with an overlap score in [0.3, 1]. In addition, we rotate
images that are not upright using the gravity direction of
each scene. All images are resized such that their smallest
dimension is 512 pixels, and we sample square crops of 512
pixels. PixLoc is then trained with batches of 6 image pairs.

Inference: In order to keep the runtime reasonable, we use 5



or 3 reference images when initializing from hloc or retrieved
reference poses, respectively. The optimization runs at each
level for at most 100 iterations, but stops when either the
gradient or the step are small enough. When refining hloc
poses, we only optimize over the medium and fine levels as
the initial estimate is always sufficiently good. All images
are resized such that their longest dimension is equal to 1024
pixels. For the multiscale inference, the resized images are
successively aligned at scale 1/4 and 1.

Ablation study: We sample 2000 query images from slices
6,7, 13, and 21 of the CMU dataset. To generate challenging
pairs, we select the closest reference image that is at least
4 meters away. For the baseline based on a fixed damping
factor \, we use A=10"2. As GN-Net [ 0] has no publicly-
available implementation, we reimplemented it and trained
it with our settings on the CMU dataset. The GN-Net loss
has several hyperparameters: the Gauss-Newton sampling
vicinity, the weight of the contrastive loss, and the margin of
its negative term. We performed an extensive hyperparameter
search and report the best results obtained. Our training data
is significantly more difficult than the one used in the original
paper [ 10], with significantly larger baselines and appearance
changes. This explains the large performance gap observed
in Table 3 compared to the results originally reported.



Images Features Confidence

A

Query

Reference

Query Reference Query

Reference

=8
[}
=}
&

Reference

Figure 4. Successful localization on the CMU dataset. We show 5 challenging queries with large initial errors and large cross-season
appearance changes that are successfully localized by PixLoc. We project 3D SfM points into the initial reference image (in green) and into
the query image using the estimated pose (in red). We show the features at the 3 different levels, mapping them to RGB using PCA. We
also show the confidence maps, where blue pixels are ignored while red ones are more important for the optimization. Features useful for
localization are invariant across seasons and thus appear in similar colors.
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Figure 5. Failure cases on the CMU dataset. We show examples for which the optimization results in a large final error. This is often due
to repeated elements or to a lack of spatial context of the coarse features or a lack of distinctive elements. Natural scenes are be particularly
challenging when tree trunks and vegetation cannot be easily distinguished.
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Figure 6. Successful localization on the Aachen dataset. We show 5 challenging queries with large initial errors and large day-night
appearance changes that are successfully localized by PixLoc. The reprojection and pose errors are computed with respect to the pose

estimated by hloc.
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Figure 7. Failure cases on the Aachen dataset. Convergence to a local and incorrect minima can be due to large appearance changes (row
1), occlusion (row 2), large viewpoint change (row 3) or repeated structures on facades (rows 4 and 5).
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Figure 8. Convergence basin. We show the convergence basins of individual selected points given cross-season query and reference images
from the CMU dataset. The last row shows smaller basins due to repeated patterns like poles or tree silhouettes.
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